

    
      
          
            
  [image: OXASL logo]

OXASL - ASL-MRI analysis pipeline

OXASL is a package for performing Bayesian analysis of Arterial Spin Labelling
MRI data. Features of the toolbox include:



	Support for single or multi delay (inversion time) pCASL or PASL data including acquisitions with variable repeats and/or labelling durations


	Handles label-control or subtracted input data in various ordering conventions


	Calibration using the reference region or voxelwise methods


	Structural registration and output in structural space


	GM/WM Partial volume correction


	HTML summary report







Plugins are also available for:



	Vessel-encoded ASL data


	Multiphase ASL data







OXASL works within an FSL environment which must be installed.


Contents:


	Bayesian Inference for Arterial Spin Labelling MRI

	Getting the OXASL software

	OXASL walk through tutorial - command line

	OXASL walk through tutorial - GUI

	Example using vessel encoded pCASL data

	Example using multiphase ASL data

	OXASL command reference

	OXASL API








          

      

      

    

  

    
      
          
            
  
Bayesian Inference for Arterial Spin Labelling MRI

[image: BASIL perfusion image]
Arterial Spin Labeling (ASL) MRI is a non-invasive method for the quantification
of perfusion. Analysis of ASL data typically requires the inversion of a kinetic
model of labeled blood-water inflow along with a separate calculation of the equilibrium
magnetization of arterial blood.

The OXASL toolbox uses the FSL FABBER ASL package which performs the kinetic modelling
using Bayesian inference principles. The package was orginally developed for
multi delay (inversion time) data where it can be used to greatest effect, but
is also sufficiently flexible to deal with the widely used single delay form
of acquisition.


Note

If you want to perform analysis of a functional experiment with ASL data, i.e. one where
you want to use a GLM, then you should consult the perfusion section of
FEAT [https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide],
or if you have dual-echo (combined BOLD and ASL) data then consult
FABBER [https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FABBER].



For single delay ASL data kinetic model inversion is relatively trivial and
solutions to the standard model have been described in the literature. However,
there are various advantages to aquiring ASL data at multiple times
post-inversion and fitting the resultant data to a kinetic model. This
permits problems in perfusion estimation associated with variable bolus arrival
time to be avoided, since this becomes a parameter of the model whose value is
determined from the data. Commonly the model fitting will be performed with a
least squares technique providing parameter estimates, e.g. perfusion and bolus
arrival time. In contrast to this BASIL uses a (fast) Bayesian inference method
for the model inversion, this provides a number of advantages:



	Voxel-wise estimation of perfusion and bolus arrival time along with parameter
variance (allowing confidence intervals to be calculated).


	Incorporation of natural varaibility of other model parameters, e.g. values of T1,
T1b and labeling/bolus duration.


	Spatial regularization of the estimated perfusion image.


	Correction for partial volume effects (where the appropriate segmentation
information is available).







While the first two apply specfically to the case of mulitple delay data, the latter
are also applicable to single delay ASL and are only available using the Bayesian
technique employed by OXASL.




          

      

      

    

  

    
      
          
            
  
Getting the OXASL software

To use OXASL you will need FSL - version 6.0 or later is strongly recommended.
See FSL installation [https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation]
for installation instructions.


I have FSL 6.0 or later

To install into the fslpython environment use:

fslpython -m pip install oxasl oxasl_ve oxasl_mp --user





This installs the main package and the vessel-encoding plugin.
To check it is working, try running the main executable:

oxasl --version







I have an older version of FSL

You will need to download a pre-built bundle package containing the OXASL code and
also the required updated FSL dependencies. This can be found on our GitHub
release page:

https://github.com/physimals/oxasl/releases





          

      

      

    

  

    
      
          
            
  
OXASL walk through tutorial - command line

This tutorial demonstrates some of the common options available in the OXASL command line tool.

We will be working with multi-PLD data from the
FSL tutorial on Arterial Spin Labelling [https://fsl.fmrib.ox.ac.uk/fslcourse/lectures/practicals/ASLpractical/index.html].
You will need to download this data before following the tutorial.

The tutorial has been written so that we start with the most basic analysis and gradually add
options and show the effect they have on the output, as well as how they are reported in the
command log and the summary report. However this is not a complete description of all available
options - for that see the OXASL command reference.


The data

The data is from a multi-PLD pCASL acquisition with a bolus duration of 1.4s and post-labelling delays
(PLDs) PLDs every 0.25s up to 1.5s. The acquisition was 2D with an increase in the PLD per slice of
0.0452s.



Basic run without calibration or structural data

In this case we only need specify the structure and acquisition parameters for our ASL data:

oxasl -i mpld_asltc --casl --iaf=tc --ibf=tis --slicedt=0.0452 \
      --plds=0.25,0.5,0.75,1.0,1.25,1.5 --bolus=1.4 \
      -o oxasl_out





Here the --iaf=tc option indicates that the data contains tag-control pairs. --ibf=tis indicates
that the TC pairs are stored in blocks corresponding to each TI/PLD, so the first two volumes are
tag/control for PLD=0.25, while the next two volumes are repeats at the same PLD.

If the data instead consisted of label-control pairs for all the PLDs followed by another block of
repeated images at all the PLDs, this would be indicated using --ibf=rpt (blocks of repeats).

-o oxasl_out sets the output directory.


The log output

The command line outputs (hopefully) helpful information on it’s progress - to redirect this to
a file you could add >output_log to the command line above. In this case it appears as
follows:

OXASL version: 0.0.7.dev12
- Found plugin: oxasl_ve (version 0.0.7.dev2)
- Found plugin: oxasl_deblur (version 0.0.1)
- Found plugin: oxasl_enable (version 0.0.1.dev6)

Input ASL data: asldata
Data shape                    : (64, 64, 24, 96)
Label type                    : Label-control pairs
Labelling                     : CASL/pCASL
PLDs (s)                      : [0.25, 0.5, 0.75, 1.0, 1.25, 1.5]
Repeats at each TI            : [8, 8, 8, 8, 8, 8]
Bolus durations (s)           : [1.4, 1.4, 1.4, 1.4, 1.4, 1.4]
Time per slice (s)            : 0.0452





This is the program reporting its current version and some useful information about the ASL
data you have given:

Initialising structural data
- No structural data supplied - output will be ASL space only

Applying preprocessing corrections
- Data transformations
- No corrections to apply

No motion correction

Applying preprocessing corrections
- Data transformations
- No corrections to apply

No fieldmap images for distortion correction

No CBLIP images provided for distortion correction

Calculating Sensitivity correction
- No source of sensitivity correction was found

Applying preprocessing corrections
- Data transformations
- No corrections to apply





Next the preprocessing step is performed which involves performing any required corrections.
In this case there is nothing to do, but it goes through the motions anyway:

Getting the ASL image to use for registration)
- Registration reference is mean ASL signal (brain extracted)

Generated ASL data mask
- Mask generated from brain extracted registration ASL image





Now the mask is generated - it first checks to see if there is structural data but there isn’t
so the mask comes from the mean ASL signal:

Running BASIL Bayesian modelling on ASL data
- Doing initial fit on mean at each TI

BASIL v0.0.7.dev12
Data shape                    : (64, 64, 24, 6)
Label type                    : Already differenced
Labelling                     : CASL/pCASL
PLDs (s)                      : [0.25, 0.5, 0.75, 1.0, 1.25, 1.5]
Repeats at each TI            : [1, 1, 1, 1, 1, 1]
Bolus durations (s)           : [1.4, 1.4, 1.4, 1.4, 1.4, 1.4]
Time per slice (s)            : 0.0452
Model (in fabber) is : aslrest
Dispersion model option is none
Compartment exchange model option is mix
Step 1 of 3: VB -  Tissue  100%
Step 2 of 3: VB -  Tissue  Arterial  - Initialise with step 1 100%
Step 3 of 3: Spatial VB -  Tissue  Arterial  - Initialise with step 2 100%

End

- Doing fit on full ASL data

BASIL v0.0.7.dev12
Data shape                    : (64, 64, 24, 96)
Label type                    : Label-control pairs
Labelling                     : CASL/pCASL
PLDs (s)                      : [0.25, 0.5, 0.75, 1.0, 1.25, 1.5]
Repeats at each TI            : [8, 8, 8, 8, 8, 8]
Bolus durations (s)           : [1.4, 1.4, 1.4, 1.4, 1.4, 1.4]
Time per slice (s)            : 0.0452
Model (in fabber) is : aslrest
Dispersion model option is none
Compartment exchange model option is mix
Step 1 of 3: VB -  Tissue  100%
Step 2 of 3: VB -  Tissue  Arterial  - Initialise with step 1 100%
Step 3 of 3: Spatial VB -  Tissue  Arterial  - Initialise with step 2 100%

End





This section is doing the actual modelling to determine the perfusion and arrival maps.
The modelling is initially done on data that has been averaged at each PLD. The results
of this are used to initialize a second run with all the repeats available separately.
The fitting process proceeeds in three steps - the first to fit tissue parameters
(perfusion and arrival), the second adds the arterial component, and the final step
performs spatial regularization:

Generating HTML report
- Report generated in /home/ibmeuser/data/asl/fsl_course/ASL/oxasl_out/report

Output is /home/ibmeuser/data/asl/fsl_course/ASL/oxasl_out
OXASL - done





Finally an HTML report is generated which will be described below. This may not occur
if you do not have the sphinx-build program installed.



Output images

Output images can be found in the oxasl_out/output/native directory and should contain the following
files:



	perfusion.nii.gz - This is the relative perfusion image


	arrival.nii.gz - This is the inferred bolus arrival time image


	aCBV.nii.gz - This is the inferred macrovascular signal image containing arterial volume fraction as a percentage


	mask.nii.gz - This is the binary brain mask used in the analysis







The perfusion map should be viewed to ensure it looks like a perfusion image - it should show
good WM/GM contrast, for example see the image below:

[image: Perfusion image]
The arrival image is generally more uniform but may show delayed arrival at the posterior and superior
regions:

[image: Arrival time image]
The macrovascular component should be limited to major arteries. To view a good image set the display
range in your viewing software to 0-100 and view a slice through the circle of Willis:

[image: Macrovascular component image]


Summary report

If a summary report was generated, it will be stored in the report subdirectory. Open the file
index.html in a Web browser to see the report:

[image: Report index]
Each link provides some summary or visual representation of that part of the processing. For example
we can see how good the brain mask generated was:

[image: Report index]
In this example the other pages in the report are not that interesting, but some of the more
complex examples below generate useful information in the report.




Adding structural information

By providing structural information we get the following benefits:



	Better brain extraction


	Output in both ASL (native) space and also in structural space for overlaying onto structural image


	Possibility of automatic reference-region calibration (with calibration image, see below)


	Possibility of partial volume correction (see below)







Structural data may be supplied as a T1 weighted image or, better, an output folder from the FSL_ANAT
command run on a structural image. This is preferred because the structural image is already segmented
and bias-corrected so these steps do not need to be done by OXASL. If a structural image is supplied
directly the FSL FAST segmentation tool will be used to do a structural segmentation which can be
a slow process. Here we use FSL_ANAT output:

oxasl -i mpld_asltc --casl --iaf=tc --ibf=tis --slicedt=0.0452 \
      --plds=0.25,0.5,0.75,1.0,1.25,1.5 --bolus=1.4 \
      --fslanat T1.anat --senscorr \
      -o oxasl_out --overwrite





--senscorr indicates that the bias-correction field from the FSL_ANAT should be used. We have also
added the --overwrite option - otherwise OXASL will refuse to run since the output
directory already exists from our previous run.


Log output

The log output contains a few additional pieces of information. We will just highlight the
differences rather than showing the entire log:

Firstly, we are using the structural image as the basis of our brain mask, and registering the
ASL and structural images to each other:

Getting the ASL image to use for registration)
  - Registration reference is mean ASL signal (brain extracted)

Registering ASL data to structural data
  - Registering image: regfrom using FLIRT
  - ASL->Structural transform
[[ 9.99993443e-01 -3.06986241e-03 -1.90982874e-03 -1.71159280e+01]
[ 3.05030371e-03  9.99943733e-01 -1.01611035e-02 -6.20556631e+00]
[ 1.94091448e-03  1.01552118e-02  9.99946535e-01  3.53589818e+01]
[ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]
  - Structural->ASL transform
[[ 9.99993485e-01  3.05030364e-03  1.94091453e-03  1.70661166e+01]
[-3.06986253e-03  9.99943711e-01  1.01552116e-02  5.79359551e+00]
[-1.90982884e-03 -1.01611039e-02  9.99946567e-01 -3.54528364e+01]
[ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]

Generated ASL data mask
  - Mask generated from brain extracting structural image and registering to ASL space





We are also performing a sensitiviy correction using the bias field from the FSL_ANAT
output:

Calculating Sensitivity correction
  - Sensitivity image calculated from bias field





Finally, after the modelling steps are complete, the ASL->Structural registration is
improved using BBR (Boundary Based Registration) which uses the output perfusion map
because this has good WM/GM contrast. This means output in structural space will be
better aligned to the structural image:

Registering ASL data to structural data
  - BBR registration using epi_reg
  - ASL->Structural transform
[[ 9.99985245e-01 -3.27267408e-03  4.33140408e-03 -1.71764269e+01]
[ 3.23107063e-03  9.99948863e-01  9.57749342e-03 -6.65767001e+00]
[-4.36252543e-03 -9.56335410e-03  9.99944806e-01  4.26785518e+01]
[ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]
  - Structural->ASL transform
[[ 9.99985284e-01  3.23107076e-03 -4.36252668e-03  1.73838719e+01]
[-3.27267442e-03  9.99948967e-01 -9.56335721e-03  7.00926763e+00]
[ 4.33140255e-03  9.57749029e-03  9.99944701e-01 -4.25380300e+01]
[ 0.00000000e+00  0.00000000e+00  0.00000000e+00  1.00000000e+00]]







Output images

The ASL space (native) output should be much the same as the previous example (possibly with a slightly
different brain mask). However we now also have output in structural space in the output/struct
subdirectory. These images are transformed into the same space as the structural image so they
can easily be overlaid onto the structural image. e.g. this perfusion image:

[image: Perfusion in structural space]


Summary report

The initial and final ASL->Structural registrations are presented in the report as a matrix,
summary transformation parameters and an overlay of GM/WM segmentations onto the original
ASL data. These should align pretty well, particularly the final registration.

[image: Structural registration from report]
The report also includes a page showing the segmentation of the structural image into
WM, GM and CSF. This may be important to check if you are using partial volume correction.




Adding calibration

Calibration enables the output of perfusion maps in physical units, enabling cross-subject and
cross-session comparisons:

oxasl -i mpld_asltc --casl --iaf=tc --ibf=tis --slicedt=0.0452 \
      --plds=0.25,0.5,0.75,1.0,1.25,1.5 --bolus=1.4 \
      --fslanat T1.anat --senscorr \
      -c aslcalib --tr=4.8 --cmethod=single  \
      -o oxasl_out --overwrite





The calibration image is specified using -c aslcalib. --cmethod=single indicates that we
want to use a single M0 value for calibration, derived from a reference region. By default OXASL
uses CSF from the ventricles, identified by registering the structural image to a standard
brain image and using this to mask the ventricles from the CSF segmentation output from either
FAST or (in this case) FSL_ANAT. --tr=4.8 allows a correction to be made for differing T1
value in the tissue and reference. TE can also be similarly provided to correct for differing T2
values but we are not doing this for this example.


Log output

The first part of calibration consists in calculating the tissue M0 magnetisation value.
This occurs before the modelling step as it depends only on the calibration image:

Calibration - calculating M0
  - Doing reference region calibration
  - Acquisition: TE=0.000000, TR=4.800000, Readout time (TAQ)=0.000000
  - Using tissue reference type: csf
  - T1r: 4.300000; T2r: 750.000000; T2b: 150.000000; Part co-eff: 1.150000
  - Doing automatic ventricle selection using standard atlas
  - Masking FAST output with standard space derived ventricle mask
  - Transforming tissue reference mask into ASL space
  - Thresholding reference mask
  - Number of voxels in tissue reference mask: 224
  - MODE: longtr
  - Calibration gain: 1.000000
  - mean signal in reference tissue: 1116.398541
  - T1 correction factor: 1.486980
  - T2 correction factor: 1.000000
  - M0: 1443.532699





The T1 correction factor is based on our supplied --tr value. The T2 correction factor is
1 because we did not supply a --te value.

After modelling has been done the output perfusion maps can then be scaled using this M0
value. There is also a presumed value for the inversion efficiency which differs between
PASL and pCASL, and a fixed multiplier to convert the answer into physical units - for
perfusion this is ml/100g/min



	Calibrating perfusion data: perfusion

	
	Using inversion efficiency correction: 0.850000


	Using multiplier for physical units: 6000.000000


	Applying sensitivity correction






	Calibrating perfusion data: aCBV

	
	Using inversion efficiency correction: 0.850000


	Using multiplier for physical units: 100.000000













Output images

Calibrated images are stored with the suffix __calib, e.g. aCBV_calib and
perfusion_calib.

Since reference region calibration scales the output perfusion map by a constant M0 value,
the perfusion_calib image looks identical to the perfusion image but the value
range is different and should be comparable between different calibrated scans.

[image: Calibrated perfusion in ASL space]


Summary report

Reference region calibration involves isolation of a particular tissue type in the
calibration image - usually CSF from the ventricles. The report presents the steps
taken to identify this region which should be checked to ensure that what it thinks
are the ventricles really are. For example in this case this is the final reference
mask:

[image: Reference region from report]
Note that this process is intended to identify voxels which are close to 100% CSF.
It is not intended to identify the whole of the ventricles and the number of
voxels selected may be quite small.

The report also presents average perfusion values in GM and WM with the normal ranges,
so we can check things are roughly as we’d expect:

[image: Calibrated perfusion image from report]



Distortion correction

In this case a phase-encoding reversed calibration image (Blipped image) was obtained which
can be used to apply distortion correction using the FSL TOPUP tool:

oxasl -i mpld_asltc --casl --iaf=tc --ibf=tis --slicedt=0.0452 \
      --plds=0.25,0.5,0.75,1.0,1.25,1.5 --bolus=1.4 \
      --fslanat T1.anat --senscorr \
      -c aslcalib --tr=4.8 --cmethod=single  \
      --cblip=aslcalib_PA --echospacing=0.00952 --pedir=y \
      -o oxasl_out --overwrite





The echo spacing (also known as the dwell time) is given in seconds and the phase encoding direction
must also be given --pedir=y. Normally this corresponds to scanner co-ordinates, however it is
important to view the results of distortion correction to make sure it is as expected.


Log output

Distortion correction is performed as part of the preprocessing steps. Note that this is a
multi-step process and distortion correction happens at the end:

Calculating distortion Correction using TOPUP

Calculating Sensitivity correction
  - Sensitivity image calculated from bias field

Applying preprocessing corrections
  - Pre-processing image: calib
  - Pre-processing image: cblip
  - Data transformations
  - No corrections to apply
  - Adding TOPUP distortion correction
  - Applying sensitivity correction







Output images

The effect of distortion correction can be subtle. The image below show a slice from the
perfusion map with distortion correction enabled (right image) and disabled (left image).
The largest difference is at the anterior end which corresponds to --pedir=y.

[image: Calibrated perfusion in ASL space]


Summary report

The summary report includes a page presenting distortion correction images however
these are not currently easy to interpret so we will not present them here.




Partial volume correction


Warning

Partial volume correction adds considerably to the run time of OXASL!



Partial volume correction is enabled using the --pvcorr option. It uses the
GM/WM segmentation from the structural data to model the GM and WM contributions
separately, weighted according to the tissue proportions in each voxel:

oxasl -i mpld_asltc --casl --iaf=tc --ibf=tis --slicedt=0.0452 \
      --plds=0.25,0.5,0.75,1.0,1.25,1.5 --bolus=1.4 \
      --fslanat T1.anat --senscorr \
      -c aslcalib --tr=4.8 --cmethod=single  \
      --cblip=aslcalib_PA --echospacing=0.00952 --pedir=y \
      --pvcorr \
      -o oxasl_out --overwrite






Log output

Partial volume correction is not currently very well described in the log. It occurs
after the main model fit has been performed, and the final stage registration (using
the perfusion weighted image) has occurred. This is important - accurate PVC requires
a good registration to the structural image which provides the GM and WM partial volumes.

If the data mask was generated from the structural image, it is first recreated to account
for the final ASL->Structural registration. The model fitting is then run again with
PVC enabled in the final step, and with an initialization step for the PVC parameters
which uses the structural segmentation:

Generated ASL data mask
  - Mask generated from brain extracting structural image and registering to ASL space

Running BASIL Bayesian modelling on ASL data

- Doing fit on full ASL data

BASIL v0.0.7.dev19
Data shape                    : (64, 64, 24, 96)
Label type                    : Label-control pairs
Labelling                     : CASL/pCASL
PLDs (s)                      : [0.25, 0.5, 0.75, 1.0, 1.25, 1.5]
Repeats at each TI            : [8, 8, 8, 8, 8, 8]
Bolus durations (s)           : [1.4, 1.4, 1.4, 1.4, 1.4, 1.4]
Time per slice (s)            : 0.0452
Model (in fabber) is : aslrest
Dispersion model option is none
Compartment exchange model option is mix
Step 1 of 4: VB -  Tissue  100%
Step 2 of 4: VB -  Tissue  Arterial  - Initialise with step 1 100%
Step 3 of 4: PVC initialisation - Initialise with step 2     Initialising partial volume correction...
DONE
Step 4 of 4: Spatial VB -  Tissue  Arterial  PVE - Initialise with step 3 100%





Note the PVC initialisation in Step 3, and the PVE component in Step 4.



Output images

The main differenec is that the perfusion image is split between GM (perfusion_calib) and
WM (perfusion_wm_calib). Both should only be interpreted within the corresponding segmentation -
outside these regions (e.g. in WM regions when viewing the GM perfusion map), the image will be
smooth and lacking in detail - reflecting the lack of information in the data for this region.
This is visible in the images below (Top: GM, Bottom: WM).

[image: Calibrated perfusion in GM]
[image: Calibrated perfusion in WM]


Summary report

In the summary report, it is important to disregard the WM averages in the GM perfusion map, and
vice versa:

[image: GM perfusion image report]





          

      

      

    

  

    
      
          
            
  
OXASL walk through tutorial - GUI

This tutorial demonstrates some of the common options available in the
OXASL GUI.

We will be working with single and multi-PLD data from the
FSL tutorial on Arterial Spin Labelling [https://fsl.fmrib.ox.ac.uk/fslcourse/lectures/practicals/ASLpractical/index.html].
You will need to download this data before following the tutorial.

The tutorial has been written so that we start with the most basic analysis and gradually add
options and show the effect they have on the output, as well as how they are reported in the
command log and the summary report. However this is not a complete description of all available
options in the GUI or the command line - for that see the OXASL walk through tutorial - command line or OXASL command reference.


Contents


	Perfusion quantification using Single PLD pcASL


	The data


	(Simple) Perfusion Quantification






	Improving the Perfusion Images from single PLD pcASL


	Motion and Distortion correction


	Making use of Structural Images


	Different model and calibration choices


	Partial Volume Correction






	Perfusion Quantification (and more) using Multi-PLD pcASL


	The data


	Perfusion Quantification


	Arterial/Macrovascular Signal Correction






	Partial Volume Correction







Perfusion quantification using Single PLD pcASL

The aim of this exercise is to perform perfusion quantification
with one of the most widely recommened variants of ASL. Single PLD
pcASL is now regarded as sufficiently simple and reliable, both for
acquisition and analysis, that it is the first option most people
should consider when using ASL for the first time. Although more can be done with other ASL variants,
particularly when acquisition time allows.


The data

This dataset used pcASL labeling and we are going to start
with data collected using a single post-label delay. This dataset
follows as closely as possible the
recommendations of the ASL Consensus Paper (commonly called the
‘White Paper’) on a good general purpose
ASL acquisition, although we have chosen to use a 2D mutli-slice
readout rather than a full-volume 3D readout.

The files you will need to begin with are:



	spld_asltc.nii.gz - the label-control ASL series containing 60
volumes. That is 30 label and 30 control, in pairs of alternating images with
label first.


	aslcalib.nii.gz - the calibration image, a (largely) proton-density
weighted image with the same readout (resolution etc) as the main
ASL data. The TR for this data is 4.8 seconds, which means there
will be some T1 weighting.


	aslcalib_PA.nii.gz - another calibration image,
identical to aslcalib.nii.gz apart from the use of
posterior-anterior phase encoding (anterior-posterior was used in
the rest of the ASL data). This is provided for distortion
correction.


	T1.nii.gz - the T1-weigthed anatomical of the same
subject.







To launch the GUI at the command line you will need to type
oxasl_gui. Note that if you have downloaded the
‘pre-release’ yourself, you may need to provide a path to the
installed version of the GUI, e.g. /Users/{blah}/Downloads/oxasl/oxasl_gui

Once it has launched you will find yourself on the ‘Input Data’ tab, you
should:



	Load the ASL data spld_asltc.nii.gz as the ‘Input Image’.


	Set the ‘Number of PLDs’, which in this case is 1, this is already done by default.


	Click the ‘Update’ button beneath the ‘Data Preview’ pane on the right.







At this point the GUI should look like the screen shot below and
a perfusion weighted image will have appeared in the ‘Data Preview’ pane.
This this is reassuring, if we didn’t see something that
looks roughly like this, we might check if the data order that the
GUI is expecting matches that in the data. We could alter the ‘Data
order’ settings if needed and update the preview again.

[image: BASIL GUI previewing perfusion-weighted image]
Note also, beneath the ‘Data Preview’, that there is a ‘Data order
preview’. The idea of this graphic is to help visually to confirm
that the way that the GUI is intepreting the ordering of volumes in
the data matches what you are expecting. In this case we have a
single PLD repeated 30 times with the label and control images
paired in the data (this is pretty common). What the ‘Data order
preview’ shows is the first instance of the PLD in purple, showing
both the label and control (hatched) volume. Each subsequent repeat
of the same PLD is coloured green, again showing that we have a
label follwed by control (hatched) volume.

You can try a different ‘Data order’ option to see what
happens. Change ‘Label/Control pairs’ from ‘Label then control’ to
‘Control then label’. This switches the expected order of label and
control images within the pair. If you then udpate the preview you
will find that the contrast reverses, the perfusion now has the
wrong ‘sign’.



(Simple) Perfusion Quantification

We have checked the PWI, thus we
can proceed to final quantification of perfusion, inverting the
kinetics of the ASL label delivery and using the calibration
image to get values in the units of ml/100g/min.

To do this we need to tell the BASIL GUI some information about the
data and the analysis we want to perform.

On the ‘Input Data’ tab we need to sepcify the ‘Acquisition parameters’:



	Labelling - cASL/pcASL (the deafult option).


	Bolus duration (s) - 1.8 (default).


	PLDs (s) - 1.8 (default).


	Readout - 2D multi-slice (you will need to set this).


	Time per slice (ms) - 45.2 (only appears when you change the Readout option).







You can now hit ‘Next’ and you will be taken to the next tab. For
this (simple) analysis we do not want to use a structural image, so
we can move on by clicking ‘Next’ again. Or we could skip stright to
the ‘Calibration’ tab using the menu across the top.

On the ‘Calibration’ tab, ‘Enable Calibration’ first, then load
the calibration image aslcalib.nii.gz. Change the
‘Calibration mode’ to ‘voxelwise’, and set the ‘Sequence TR (s)’ to
be 4.8.

[image: BASIL GUI Calibration]
Finally, we need to set the analysis options: either skip to the
‘Analysis’ tab or click ‘Next’ twice.

On the ‘Analysis’ tab, choose an output directory name, e.g.,
oxasl. And, select ‘Analysis which conforms to White
Paper’, so that we know the analysis is using the same default
parameter values proposed in the ‘ASL White Paper’ quantification
formula. Note that in the lower left corner the GUI is now telling
us that we are ‘Ready to Go’. At this point you can click ‘Run’ in
the lower right corner.

[image: BASIL GUI Analysis]
The output of the oxasl command line tool is shown in a
pop-up window. You can ignore any erfc underflow error messages
- they are harmless and occur because we haven’t provided any
structural data

This analysis should only take a few minutes, but while you are
waiting you can read ahead and even start changing the options in
the GUI ready for the next analysis that we want to run.

Once the analysis had completed, view the final result:

fsleyes oxasl/output/native/calib_voxelwise/perfusion.nii.gz





Note that if you just supply a name for the output directory (not
a full path), as we have here, this will be placed in the ‘working
directory’, i.e. whichever directory you were in when you launched
the GUI.

You will find something that looks very similar to the PWI we viewed before, but now the values at every voxel are in ml/100g/min.

You will also find a PWI saved as
oxasl/output/native/perfusion. This is very similar to the
PWI displayed in the preview pane, except that the kinetic
model inversion has been applied to it, this is the image
pre-calibration.




Improving the Perfusion Images from single PLD pcASL

The purpose of this practical is essentially to do a better job of
the analysis we did above, exploring more of the features of the GUI
including things like motion and distortion correction.


Motion and Distortion correction

Go back to the GUI which should still be setup from the last
analysis you did (if you have closed it follow the steps above to
repeat the setup - but do not click run).

On the ‘Distortion Correction’ tab, select ‘Apply distortion
correction’. Load the ‘Phase-encode-reveresed calibration image’
aslcalib_PA.nii.gz. Set the ‘Effective EPI echo
spacing’ (also known as the dwell time) to 0.95ms and the ‘Phase encoding direction’ to ‘y’.


[image: BASIL GUI previewing perfusion-weighted image]



On the ‘Analysis’ tab, select ‘Motion Correction’. Make sure you
have ‘Adaptive spatial regularisation on perfusion’ selected (it is
by default). This will reduce the appearance of noise in the final
perfusion image using the
minimum amount of smoothing appropriate for the data.

You might like
the change the name of the output directory at this point, so that
you can comapre to the previous analysis.

Now click ‘Run’.


[image: BASIL GUI Analysis]



For this analysis we are still in ‘White
Paper’ mode. Specifically this means we are using
the simplest kinetic model, which assumes that all delivered blood-water has
the same T1 as that of the blood and that the Arterial Transit Time should be
treated as 0 seconds.

As before, the analysis should only take a few minutes, slightly
longer this time due to the distortion and motion correction. Like the
last exercise you might want to skip ahead and start setting up the
next analysis.

To view the final result:

fsleyes oxasl/output/native/calib_voxelwise/perfusion.nii.gz





The result will be similar to the analysis in Example 1 although the effect of distortion
correction should be noticeable in the anterior portion of the
brain. The effects of motion correction are less obvious, this
data does not have a lot of motion corruption in it.



Making use of Structural Images

Thus far, all of the analyses have relied purely on the ASL data
alone. However, often you will have a (higher resolution) structural
image in the same subject and would like to use this as well, at the
very least as part of the process to transform the perfusion images into some
template space.

We can repeat the analysis above but now providing structural
information. The recommended way to do
this is to take your T1 weighted structural image (which is most
common) and firstly process using fsl_anat, passing the
output directly from that tool BASIL.

For this practical fsl_anat has already been run for
you and you will find the output in the data directory as ~/fsl_course_data/ASL/T1.anat

Go back to the analysis you have setup above. On the ‘Structure’
tab, for ‘Structural data from’ select ‘Existing FSL_ANAT
output’. Then for the ‘Existing FSL_ANAT output’ choose
T1.anat.


[image: BASIL GUI Structure]



This analysis will take somewhat longer overall (potentailly
15-20 mins), the extra time
is taken up doing careful registration between ASL and structural
images. Thus, this is a good point to keep reading on and leave the
analysis runnning.

You will find some new results in the output
directory:



	oxasl/struct_space - this sub-drectory contains results
transformed into the same space as the structural image. The
files in here will match those in the native
subdirectory of the earlier analysis, i.e., containing perfusion
images with and without calibration.


	oxasl/output/native/asl2struct.mat - this is the
(linear) transformation between ASL and structural space. It can be
used along with a transformation between structural and template
space to transform the ASL data into the template space. It was used
to create the results in oxasl/output/struct.


	oxasl/output/native/perfusion_calib_gm_mean.txt -
this contains the result of calculating the perfusion within a gray
matter mask, these are in ml/100g/min. The mask was derived from the partial volume estimates
created by fsl_anat and transformed into ASL space
followed by thresholding at 70%. This is a helpful check on the
absolute perfusion values found and it is not aytpical too see
values in the range 30-50 here. There is also a white matter result
(for which a threshold of 90% was used).


	oxasl/output/native/gm_mask.nii.gz - this is the gray
matter mask used in the above calculations. There is also the
associated white matter mask.


	oxasl/output/native/gm_roi.nii.gz - this is another
mask that represents areas in which there is some grey matter (at
least 10% from the partial volume estimates). This can be useful for
visualisation, but mainly when looking at partial volume corrected
data.









Different model and calibration choices

Thus far the calibration to get perfsion in units of ml/100g/min
has been done using a voxelwise division of the realtive perfusion
image by the (suitably corrected) calibration image - so called
‘voxelwise’ calibration. This is in keeping with the recommendations
of the ASL White Paper for a simple to implement quantitative
analysis. However, we could also choose to use a reference tissue to
derive a single value for the equilibrium magnetization of arterial
blood and use that in the calibration process.

Go back to the analysis you have already set up. We are now going
to turn off ‘White Paper’ mode, this will provide us with more
options to get a potentially more accurate analysis. To do this return to the ‘Analysis’ tab
and deselect the ‘White Paper’ option, you will see that the
‘Arterial Transit Time’ goes from 0 seconds to 1.3 seconds (the
default value for pcASL in BASIL based on our experience with pcASL
labeling plane placement) and the ‘T1’ value (for tissue) is
different to ‘T1b’ (for arterial blood), since the Standard (aka
Buxton) model for ASL kinetics considers labeled blood both in the
vascualture and the tissue.

[image: BASIL GUI Analysis]
Now that we are not in ‘White Paper’ mode we can also change the
calibration method. On the ‘Calibration’ tab, change the ‘Calibration mode’ to ‘Reference
Region’. Now all of the ‘Reference tissue’ options will become
available, but leave these as they are: we will accept the default
option of using the CSF (in the ventricles) for calibration.

[image: BASIL GUI Calibration]
You could click ‘Run’ now and wait for the analysis to
complete. But, in the interests of time we will save ourselves the
bother of doing all of the registration all over again. Before
clicking run, therefore, do:



	On the ‘Calibration’ tab select ‘Mask’ and load
csfmask.nii.gz from the data directory. This is a ready
prepared ventricular mask for this subject. (in fact it is precisely
the mask you would get if you ran the analysis as setup above).


	Go back to the ‘Structure’ tab and choose ‘None’ for ‘Structural
data from’. This will turn off all of the registration
processes.


	You might also like to choose a different output directory name,
so that you can comapre with the previous analysis.







While this is running you might want to read ahead, or if you
are keen to keep moving through the examples, then skip this
analysis and keep going.

The resulting perfusion images should look very similar to those
produced using the voxelwise calibration, and the absolute values
should be similar too. For this, and many datasets, the two methods
are broadly equivalent. You can check on some of the interim
calcuations for the calibration by looking in the
oxasl/calib subdirectory: here you will find the value
of the estimated equilirbirum mangetization of arterial blood for
this dataset in M0.txt and the reference tissue mask in
refmask.nii.gz. It is worth checking that the latter
does indeed only lie in the venticles when overlaid on an ASL image
(e.g. the perfusion image or the calibration image), it should be
conservative, i.e., only select voxels well within the ventricles
and not on the boundary with white matter.



Partial Volume Correction

Having dealt with structural image, and in the process obtained
partial volume estimates, we are now in a position to do partial
volume correction. This does more than simply attempt to estimate
the mean perfusion within the grey matter, but attempts to derive and
image of gray matter perfusion directly (along with a separate image
for white matter).

This is very simple to do via the GUI. Return to your earlier
analysis. You will need
to revist the ‘Structure’ tab and reload the T1.anat
result as you did above, the partial volume estimates produced by
fsl_anant (in fact they are done using fast)
are needed for the correction. On the ‘Analysis’ tab,
select ‘Partial Volume Correction’. That is it! You might not want to
click ‘Run’ at this point becuase partial volume correction takes
substantially longer to run.

You will find the results of this analysis already completed for
you in the directory ~/fsl_course_data/ASL/oxasl_spld_pvout. In this results directory you will still find an analysis performed
without partial volume correction in oxasl/output/native
as before. The results of partial volume correction can be found in
oxasl/output/native/pvcorr. This new subdirectory has the
same structure as the non-corrected results, only now
perfusion_calib.nii.gz is an estimate of perfusion only
in gray matter, it has been joined by a new set of images for the
estimation of white matter perfusion, e.g.,
perfusion_wm_calib.nii.gz. It may be more helpful to look at
perfusion_calib_masked.nii.gz (and the equivalent
perfusion_wm_calib_masked.nii.gz) since this has been
masked to include only voxels with more than 10% gray matter (or white
matter), i.e., voxels in which it is reasonable to interpret the gray
matter (white matter) perfusion values.




Perfusion Quantification (and more) using Multi-PLD pcASL

The purpose of this exercise is to look at some multi-PLD pcASL. As
with the single PLD data we can obtain perfusion images, but now we
can account for any differences in the arrival of labeled blood-water
(the arterial transit time, ATT) in different parts of the brain. As we
will also see we can extract other interesting parameters, such as the
ATT in its own right, as well as arterial blood volumes.


The data

The data we will use in this section supplements the single PLD pcASL data above, adding
multi-PLD ASL in the same subject (collected in the same
session). This dataset used the same pcASL labelling, but with a
label duration of 1.4 seconds and 6 post-labelling delays of 0.25,
0.5, 0.75, 1.0, 1.25 and 1.5 seconds.

The files you will also now need are:



	mpld_asltc.nii.gz - the label-control ASL series
containing 96 volumes: each PLD was repeated 8 times, thus there are
16 volumes (label and control paired) for each PLD. The data has
been re-ordered from the way it was acquired, such that all of the
measurements from each PLD have been grouped together - it is
important to know this data ordering when doing the analysis.









Perfusion Quantification

Load the GUI (asl_gui), it is best to start a
whole new analysis as we are moving on to a new set of data and not
reuse any GUI you already have open. On the
‘Input Data’ tab, for the ‘Input Image’ load
mpld_asltc.nii.gz. Unlike the single-PLD data, we need to specify the correct number
of PLD, which is 6. At this point the ‘Number of repeats’ should
correctly read 8. Click ‘Update’ below the ‘Data preview pane’. A
perfusion-weighted image should appear - this is an average over all
the PLDs (and will thus look different to Example 1).

[image: BASIL GUI Input Data]
Note the ‘Data order preview’. For mutli-PLD ASL it is important
to get the data order specification right. In this case the default
options in the GUI are not correct. The PLDs do come as label-control
pairs, i.e. alternating label then control images. But, the default
assumption in the GUI is that a full set of the
6 PLDs has been acquired first, then this has been repeated 8
subseqeunt times, this is indcated in the preview by colouring the
first instance of a PLD as purple and subsequent as green, with
different PLDs appearing as different shades of purple (or
green). This is quite commonly how multi-PLD ASL data is acquired,
but that might not be how the data is ordered in the final image
file.

As we noted earlier, in this data all of the measurements at the
same PLD are grouped together. You need to change the ‘Grouping
order’ on the ‘Input Data’ tab: leave the first option along
(‘Label/Control pairs’) and change the second option from ‘PLDs’ to
‘Repeats’. Note that the data order preview changes to reflect the
different ordering. This is now correct: remeber that the purple
coloured entries indicate the first time that PLD was acquired.

Note that if you were to click ‘Update’ on the ‘Data preview’ nothing
changes, the ordering doesn’t affect the (simple) way in which we
have calucated the PWI. Getting a plausible looking PWI is a good sign that the data
order is correct, but it is not a guarantee that the PLD ordering is
correct, so always check carefully. One way to do this, in this
case, would be to open the data in fsleyes and look at
the timeseries: the raw intensity of both label and control images
for one PLD are different to those from another PLD (due to the
background suprresion). THe timeseries for the raw data looks like a
series of steps, indicating the repeated measurements from each PLD
are grouped together (groubed by ‘repeats’).

Once we are happy with the PWI and data order, we can set the
‘Acquisition parameters’:



	Labelling - ‘cASL/pcASL’ (default).


	Bolus duration (s) - 1.4 (shorter than the default).


	PLDs (s) - 0.25, 0.5, 0.75, 1.0, 1.254, 1.5.


	Readout - ‘2D multi-slice’ with ‘Time per slice’ 45.2.







Move to the ‘Calibration’ tab, select ‘Enable Calibration’ and as
the ‘Calibration Image’ load the aslcalib.nii.gz image
from the Single-PLD data (it is from the same subject in the same
session so we can use it here too). We have skipped the ‘Structure’
tab (to make the analysis quicker), this means if we want ‘Calibration
mode’ to be ‘Reference Region’ we need to supply a mask of the
region of tissue to use. Select ‘Mask’ and load
csfmask.nii.gz. Set the ‘Sequence TR’ to be 4.8, but
leave all of the other options alone.

[image: BASIL GUI Calibration]
Move to the ‘Distortion Correction’ tab. Select ‘Apply distortion
correction’. Load the ‘Phase-encode-reveresed calibration image’
aslcalib_PA.nii.gz from the Single-PLD pcASL data. Set the ‘Effective EPI echo
spacing’ to 0.95ms again and the ‘Phase encoding direction’ to ‘y’.

Finally, move to the ‘Analysis’ tab. Choose an output directory,
leave all of the other options alone. Click ‘Run’.

This analysis shouldn’t take a lot longer than the equivalent
single PLD analysis, but feel free to skip ahead to the next section
whilst you are waiting.

The results directory from this analysis should look similar to
that obtained for the single PLD pcASL. That is reassuring as it is the same subject. The main difference is the
arrival.nii.gz image. If you examine this image you should find a pattern of values
that tells you the time it takes for blood to transit between the
labeling and imaging regions. You might notice that the
arrival.nii.gz image was present even in the single-PLD
results, but if you looked at it contained a single value - the one
set in the Analysis tab - which meant that it
appeared blank in that case.



Arterial/Macrovascular Signal Correction

In the analysis above we didn’t attempt to model the presence of
arterial (macrovascular) signal. This is fairly
reasonable for pcASL in general, since we can only start sampling
some time after the first arrival of labeled blood-water in the
imaging region. However, given we are using shorter PLD in our
multi-PLD sampling to improve the SNR there is a much greater
likelihood of arterial signal being present. Thus, we might like to
repeat the analysis with this component included in the model.

Return to your analysis from before. On the ‘Analysis’ tab select
‘Include macro vascular component’. Click ‘Run’.

The results directory should be almost identical to the
previous run, but now we also gain some new results:



	aCBV.nii.gz and


	aCBV_calib.nii.gz







Following the convention for the
perfusion images, these are the relative and absolute arterial
(cerebral) blood volumes respectively. If you examine one of these
and focus on the more inferior slices you should see a pattern of
higher values that map out the structure of the major arterial
vasculature, including the Circle of Willis. This finding of an
arterial contribution in some voxels results in a correction to the
perfusion image - you may now be able to spot that in the same
slices where there was some evidence for arterial contamination of
the perfusion image before that has now been removed.




Partial Volume Correction

In the same way that we could do
partial volume correction for single PLD pcASL, we can do this
for multi-PLD. If anything partial volume correction should be even
better for multi-PLD ASL, as there is more information in the data to
separate grey and white matter perfusion.

Just like the single PLD case we will require structural
information, entered on the ‘Structure’ tab. We can do as we did
before and load T1.anat. On the ‘Analysis’ tab, select
‘Partial Volume Correction’.

Again, this analysis will not be very quick and so you might not
wish to click ‘Run’ right now.

You will find the results of this analysis already completed for
you in the directory
~/fsl_course_data/ASL/oxasl_mpld_pvout. This results directory contains, as a further subdirectory, pvcorr,
within the native subdirectory, the partial volume
corrected results: gray matter (perfusion_calib.nii.gz
etc) and white matter perfusion
(perfusion_wm_calib.nii.gz etc)
maps. Alongside these there are also gray and white matter ATT maps
(arrival and arrival_wm respectively). The
estimated maps for the arterial component
(aCBV_calib.nii.gz etc) are still present in the
pvcorr directory. Since this is not tissue specific there
are not separate gray and white matter versions of this parameter.

The End.





          

      

      

    

  

    
      
          
            
  
Example using vessel encoded pCASL data

This example shows how to process vessel encoded pCASL data with OXASL.


Obtaining and installing VEASL

Vessel encoded ASL can only be processed when the VEASL tool for
vessel decoding is installed. Currently we are not able to distribute
this tool publically, so if you are interested in processing VEPCASL data
please contact Michael Chappell (michael.chappell@nottingham.ac.uk) to obtain
a copy of the VEASL code.

VEASL must be installed in your path. The ideal installation locations are
either:



	$FSLDIR/bin if you have access to $FSLDIR


	$FSLDEVDIR/bin if you have defined $FSLDEVDIR


	Anywhere else in your default $PATH









Running OXASL on VE data

The key distinction between running VE data and regular ASL data is the --iaf option.
This should be set to one of:



	--iaf=ve for raw VEPCASL data


	--iaf=vediff for VEPCASL data which has undergone pairwise subtraction







In addition the following option must be provided for VE data:



	--veslocs=<vessel locations file>







The vessel locations file defines the initial locations for the encoded vessels - the
first row gives the X co-ordinates, the second row the Y co-ordinates. For example
this data defines 4 source vessels:

-25  25 -25  25
-13 -13 -24 -25





The encoding sequence is currently assumed to be determined from the estimated initial
vessel locations.

An example command line for multi-PLD VEPCASL data would be:

oxasl -i mpld_asltc --casl --iaf=ve --ibf=tis --slicedt=0.0452 \
      --plds=0.25,0.5,0.75,1.0,1.25,1.5 --bolus=1.4 \
      --veslocs=veslocs.txt \
      -o oxasl_out





Other standard OXASL options can also be used to enable calibration, provide structural data,
or apply preprocessing corrections to the data.


Pairwise subtracted VE data

By using --iaf=vediff it is possible to process pairwise-subtracted VE data. In general
it is better to use the raw data, however some preprocessing strategies, such as denoising,
may be better applied to subtracted data, where the static signal has been removed. It
is probably not a good idea to apply motion correction in this case as the subtracted images
may only show signal in parts of the brain. Do motion correction prior to subtraction instead.




Additional common VE options


--nfpc=<Number of flows per class>

VEASL can model the fact that each voxel may be fed by more than one vessel. A combination
of feeder vessels is called a class. This option defines the number of vessels per class.
The default value is 2.



--infer-loc=none|xy|rigid

This option controls how the locations of the vessels are inferred. none means they
are fixed at their initial positions, xy means the X/Y co-ordinates are allowed to
vary, and rigid infers a rigid body transformation of the co-ordinates. The default
is rigid.



--init-loc

This option applies to multi-PLD data only. If specified an initial decoding run is
performed on the mean across all PLDs to determine vessel locations. By default these
vessel locations are then fixed when performing the vessel decoding on the individual
PLDs. It is possible to initialize the vessel locations on the mean data and also
infer them for each PLD using --init-loc together with the
--infer-loc-pld=none|xy|rigid option.




The log output

The command line output is similar to the non-VE case, however there is an additional
vessel decoding step between the preprocessing and the kinetic model inversion, which will
look something like this (showing 1 PLD only):

Performing vessel decoding
- Initial vessel locations:
X: [-25.  25. -25.  25.]
Y: [-13. -13. -24. -25.]

- Encoding matrix:
TWO
0.0, 0.0, 0.0, 0.0
0.0, 1.0, 0.0, 0.0
90.0, 2.0, -25.0, 25.0
90.0, 3.0, -25.0, 25.0
0.0, 2.0, -13.0, -24.5
0.0, 3.0, -13.0, -24.5
13.495733280795811, 2.0, -18.475358737629833, -7.29290476485388
13.495733280795811, 3.0, -18.475358737629833, -7.29290476485388
MAC:
0.0, 50.0, -0.0, -0.0, -3.0068078634963786, -0.3971255668768797
0.0, 8.974483684827054e-08, -18.75, -7.25, -12.52836611276087, -1.6546898639495466
0.0, 0.0, 270.0, 270.0, 76.5042667192042, 76.5042667192042
25.0, 25.0, 5.75, 5.75, 5.591226986387976, 5.591226986387976

- Fitting PLD 1
- Vessel locations (inference: rigid):
    X: [-24.36777377  25.63201797 -24.39952284  25.59738261]
    Y: [-14.52208469 -14.66639867 -25.52203887 -26.66634868]
    Translation: 0.616, -1.59  Rotation: -0.165 (degrees)
- Class proportions:
    [0.46011736 0.06254921 0.04755664 0.03730842 0.07797115 0.31449723]

DONE vessel decoding





The subsequent kinetic model inversion will then be performed on each vessel individually
marked by the log messages:

Processing per-vessel decoded images

- Processing vessel 1
...etc





After each vessel has been individually model fitted, the output is combined for all
vessels:

Generating combined images for all vessels







Output images

The output images are as usual found in the oxasl_out/output directory, however there is an additional
layer not present for non-VE data. The all_vessels subdirectory contains the output for all vessels
combined, while the vessel<n> directories contain the individual vessel outputs.

The usual OXASL output images are produced, for example:



	perfusion.nii.gz - This is the relative perfusion image


	arrival.nii.gz - This is the inferred bolus arrival time image


	aCBV.nii.gz - This is the inferred macrovascular signal image containing arterial volume fraction as a percentage


	mask.nii.gz - This is the binary brain mask used in the analysis







Calibrated outputs are also produced if calibration data is supplied, and structural space outputs are
also produced where structural data is available.


How all-vessel output images are combined

The combination of single-vessel data into all-vessel data is not completely trivial. The
following methods are used:



	For perfusion and macrovascular signal data, the output of the individual vessels is summed


	For arrival time and variance/STD outputs, the combined output is a weighted average of the
individual vessels, weighted by the relative perfusion contribution from each vessel in
each voxel.










Summary report

The summary report will contain, alongside the usual information, separate output images for
each vessel and the combined output images:

[image: Individual vessel output]




          

      

      

    

  

    
      
          
            
  
Example using multiphase ASL data

This example shows how to process multiphase data within OXASL. Multiphase data
is collected at a range of inversion phases, so rather than pairs of tag/control
images, one has a set of images covering angles between 0 and 180.

The multiphase plugin performs a multiphase fitting step after preprocessing but
before running the kinetic model inversion. This step essentially reduces the
multiphse data to a form equivalent to subtracted tag-control data.


Running OXASL on multiphase ASL data

The key distinction between running multiphase data and regular ASL data is the --iaf
option which should be set to --iaf=mp.

In addition one of the following must be specified



	--nphases=<Number of phases>


	--phases=<Comma separated list of phases in degrees>







If --nphases is used, the phases are spread equally between 0 and 180 degrees.

A minimal example command line for multiphase ASL data would be:

oxasl -i data.nii.gz --casl --tau=1.4 --plds=0.4 \
      --iaf=mp --nphases=8 \
      --output=oxasl_mp





Other standard OXASL options can also be used to enable calibration, provide structural data,
or apply preprocessing corrections to the data.



Additional options for multiphase data


--mp-spatial

This option uses spatial regularization during the multiphase fitting step. It is
independent of the --spatial option which controls spatial regularization during
the kinetic model fitting step.



--mp-spatial-phase

When using --mp-spatial this option places the spatial prior on the phase offset
parameter which can give better spatial regularization than the default which performs
spatial regularization on the magnitude.




--mp-biascorr

This option applies a bias correction to the multiphase fitting step. In the presence
of significant noise, the multiphase fitting is biased towards higher magnitudes with
larger amounts of noise. This option performs a multi-step process which aims to
reduce the bias by initially fitting the phase offset and then fixing this while fitting
the magnitude. The full method is described in:



	Msayib, Y., et al. Robust Estimation of Quantitative Perfusion from Multi-Phase
Pseudo-Continuous Arterial Spin Labelling. Magnetic Resonance in Medicine, 2019.









--mp-biascorr-sv

Number of supervoxels in the bias-correction step



--mp-biascorr-comp

Supervoxel compactness in the bias correction step



--mp-biascorr-sigma

Pre-supervoxel smoothing parameter in the bias correction step



--mp-options=<options file>

This allows additional options to be passed to the multiphase fitting step
(for example max-iterations=20 to increase the number of iterations).
The options should be placed in a text file.



The log output

The command line output is similar to the label-control case, however there is an additional
multiphase fitting step between the preprocessing and the kinetic model inversion, which will
look something like this (note depending on the multiphase options used there may be fewer
steps performed):

Performing multiphase decoding:
- Using supervoxel-based bias correction
- Number of supervoxels: 20  - Compactness: 0.050000  - Pre-smoothing width: 0  - Step 1: Running initial biased fit 100% - DONE
- Step 2: Fitting mean signal in supervoxels 100% - DONE
- Step 3: Running final fit with fixed phase 100% - DONE

DONE multiphase decoding







Output images

The output images are as usual found in the oxasl_out/output directory. Output files from the multiphase
fitting step are found in oxasl_out/mp.

The usual OXASL output images are produced, for example:



	perfusion.nii.gz - This is the relative perfusion image


	arrival.nii.gz - This is the inferred bolus arrival time image


	aCBV.nii.gz - This is the inferred macrovascular signal image containing arterial volume fraction as a percentage


	mask.nii.gz - This is the binary brain mask used in the analysis







Calibrated outputs are also produced if calibration data is supplied, and structural space outputs are
also produced where structural data is available.



Summary report

Currently the multiphase fitting step does not generate any information in the summary report. This will be
improved in the future!





          

      

      

    

  

    
      
          
            
  
OXASL command reference

The main OXASL command has many options, however most have sensible defaults so in practice
only a few typically need to be used. For example usages see the Walkthrough section.


Full option list

Input ASL image:


	-i ASLDATA, --asldata=ASLDATA

	ASL data file



	--iaf=IAF

	input ASl format: diff=differenced,tc=tag-control,ct
=control-tag,mp=multiphase,ve=vessel-encoded



	--order=ORDER

	Data order as sequence of 2 or 3 characters:
t=TIs/PLDs, r=repeats, l=labelling (tag/control/phases
etc). First character is fastest varying



	--tis=TIS

	TIs (s) as comma-separated list



	--plds=PLDS

	PLDs (s) as comma-separated list - alternative to
–tis



	--ntis=NTIS

	Number of TIs (for use when processing does not
require actual values)



	--nplds=NPLDS

	Equivalent to –ntis



	--rpts=RPTS

	Variable repeats as comma-separated list, one per
TI/PLD



	--nphases=NPHASES

	For –iaf=mp, number of phases (assumed to be evenly
spaced)



	--nenc=NENC

	For –iaf=ve, number of encoding cycles



	--casl

	Acquisition was pseudo cASL (pcASL) rather than pASL



	--tau=TAU, --taus=TAU, --bolus=TAU

	Bolus duration (s). Can be single value or comma
separated list, one per TI/PLD



	--slicedt=SLICEDT

	Timing difference between slices (s) for 2D readout



	--sliceband=SLICEBAND

	Number of slices per pand in multi-band setup



	--artsupp

	Arterial suppression (vascular crushing) was used



	--ibf=IBF

	input block format - alternative to –order for
compatibility. rpt=Blocks of repeats (i.e. repeats are
slowest varying), tis=Blocsk of TIs/PLDs





Structural image:


	-s STRUC, --struc=STRUC

	Structural image



	--struc-brain=STRUC_BRAIN, --sbet=STRUC_BRAIN, --struc-bet=STRUC_BRAIN

	Structural image (brain extracted)



	--struc2asl=STRUC2ASL

	Structural->ASL transformation matrix



	--asl2struc=ASL2STRUC

	ASL->Structural transformation matrix



	--wm-seg=WM_SEG

	White matter segmentation of structural image



	--gm-seg=GM_SEG

	Grey matter segmentation of structural image



	--csf-seg=CSF_SEG

	CSF segmentation of structural image



	--fslanat=FSLANAT

	FSL_ANAT output directory for structural information



	--fastsrc=FASTSRC

	Images from a FAST segmentation - if not set FAST will
be run on structural image



	--struc2std=STRUC2STD

	Structural to MNI152 linear registration (.mat)



	--struc2std-warp=STRUC2STD_WARP

	Structural to MNI152 non-linear registration (warp)





Main Options:


	--wp

	Analysis which conforms to the ‘white papers’ (Alsop
et al 2014)



	--mc

	Motion correct data



	--fixbat

	Fix bolus arrival time



	--fixbolus

	Fix bolus duration



	--artoff

	Do not infer arterial component



	--spatial-off

	Do not include adaptive spatial smoothing on CBF





Acquisition/Data specific:


	--bat=BAT

	Estimated bolus arrival time (s) - default=0.7 (pASL),
1.3 (cASL)



	--batsd=BATSD

	Bolus arrival time standard deviation (s)



	--t1=T1

	Tissue T1 (s)



	--t1b=T1B

	Blood T1 (s)





Output options:


	--save-corrected

	Save corrected input data



	--save-reg

	Save registration information (transforms etc)



	--save-basil

	Save Basil modelling output



	--save-calib

	Save calibration output



	--save-all

	Save all output (enabled when –debug specified)



	--output-stddev, --output-std

	Output standard deviation of estimated variables



	--output-var, --vars

	Output variance of estimated variables



	--no-report

	Don’t try to generate an HTML report





Calibration:


	-c CALIB, --calib=CALIB

	Calibration image



	--calib-method=CALIB_METHOD, --cmethod=CALIB_METHOD

	Calibration method: voxelwise or refregion



	--calib-alpha=CALIB_ALPHA, --alpha=CALIB_ALPHA

	Inversion efficiency



	--calib-gain=CALIB_GAIN, --cgain=CALIB_GAIN

	Relative gain between calibration and ASL data



	--tr=TR

	TR used in calibration sequence (s)





Voxelwise calibration:


	--pct=PCT

	Tissue/arterial partition coefficiant



	--t1t=T1T

	T1 of tissue (s)





Reference region calibration:


	--mode=MODE

	Calibration mode (longtr or satrevoc)



	--tissref=TISSREF

	Tissue reference type (csf, wm, gm or none)



	--te=TE

	Sequence TE (ms)



	--t1r=T1R

	T1 of reference tissue (s) - defaults: csf 4.3, gm
1.3, wm 1.0



	--t2r=T2R

	T2/T2* of reference tissue (ms) - defaults T2/T2*: csf
750/400, gm 100/60,  wm 50/50



	--t2b=T2B

	T2/T2* of blood (ms) - default T2/T2*: 150/50)



	--refmask=REFMASK

	Reference tissue mask in perfusion/calibration image
space



	--t2star

	Correct with T2* rather than T2 (alters the default T2
values)



	--pcr=PCR

	Reference tissue partition coefficiant (defaults csf
1.15, gm 0.98,  wm 0.82)





longtr mode (calibration image is a control image with a long TR):

satrecov mode (calibration image is a sequnce of control images at various TIs):


	--fa=FA

	Flip angle (in degrees) for Look-Locker readouts



	--lfa=LFA

	Lower flip angle (in degrees) for dual FA calibration



	--calib-nphases=CALIB_NPHASES

	Number of phases (repetitions) of higher FA



	--fixa

	Fix the saturation efficiency to 100% (useful if you
have a low number of samples)





Registration:


	--regfrom=REGFROM

	Registration image (e.g. perfusion weighted image)





Distortion correction using fieldmap:


	--fmap=FMAP

	fieldmap image (in rad/s)



	--fmapmag=FMAPMAG

	fieldmap magnitude image - wholehead extracted



	--fmapmagbrain=FMAPMAGBRAIN

	fieldmap magnitude image - brain extracted



	--nofmapreg

	Do not perform registration of fmap to T1 (use if fmap
already in T1-space)





Distortion correction using phase-encode-reversed calibration image (TOPUP):


	--cblip=CBLIP

	phase-encode-reversed (blipped) calibration image





General distortion correction options:


	--echospacing=ECHOSPACING

	Effective EPI echo spacing (sometimes called dwell
time) - in seconds



	--pedir=PEDIR

	Phase encoding direction, dir = x/y/z/-x/-y/-z



	--gdcwarp=GDCWARP

	Additional warp image for gradient distortion
correction - will be combined with fieldmap or TOPUP
distortion correction





Sensitivity correction:


	--cref=CREF

	Reference image for sensitivity correction



	--cact=CACT

	Image from coil used for actual ASL acquisition
(default: calibration image - only in longtr mode)



	--isen=ISEN

	User-supplied sensitivity correction in ASL space



	--senscorr-auto, --senscorr

	Apply automatic sensitivity correction using bias
field from FAST



	--senscorr-off

	Do not apply any sensitivity correction





Partial volume correction:
–pvcorr            Apply partial volume correction

Generic:


	-o OUTPUT, --output=OUTPUT

	Output directory



	--overwrite

	Overwrite output directory if it already exists



	-m MASK, --mask=MASK

	Brain mask image in ASL space



	--optfile=OPTFILE

	File containing additional options



	--debug

	Debug mode



	--version

	show program’s version number and exit



	-h, --help

	show help message and exit









          

      

      

    

  

    
      
          
            
  
OXASL API


Contents:


	Workspace module

	AslImage module

	Registration module

	Structural module

	Corrections module






OXASL - Python package for ASL-MRI analysis

Copyright (c) 2018 University of Oxford

The modules in this package are mostly Python replacements for existing shell script
and C++ code from the oxford_asl FSL module.

For many tools, FSL is required. The fslpy package is used to wrap required tools
such as BET and FAST.


Design


AslImage

The oxasl.image.AslImage class represents a captured ASL data file. It
contains information about the acquisition (number/values of TIs/PLDs, repeats,
ordering of label/control image etc). It also has methods which act directly
on the data, for example performing tag-control subtraction, or generation of
a perfusion-weighted image.:

img = AslImage("mpld.nii.gz", plds=[0.25, 0.5, 0.75, 1.0], iaf="tc", order='lrt')
diffdata = img.diff()
pwi = img.perf_weighted()







Workspaces

The workspace module contains the Workspace class which
can be used to build a higher-level interface for complex workflows. A
workspace is simply an object whose attributes are images, data, etc being
used as part of the workflow. Unlike a normal object, requesting an attribute
that does not exist returns None rather than raising an exception.:

wsp = Workspace()
print(wsp.asldata) # prints None





A workspace can optionally be associated with a physical directory. If it is,
then setting attributes causes files to be saved in this directory for supported
data types, such as images or 2D matrices.:

wsp = Workspace(savedir="myoutput")
wsp.asldata = AslImage("mpld.nii.gz", ntis=1) # Saves myoutput/asldata.nii.gz





A workspace is also associated with
a log stream (sys.stdout by default) and a prepared logging dictionary fsllog
for passing to FSL Python wrapper commands:

wsp = Workspace()
wsp.log.write("Hello World






	“)

	wsp.rois.mask = fslmaths(img).bin().run(log=wsp.fsllog)







Module functions

Other modules typically contains one or more functions which operate on a
workspace, in some cases with additional parameters (but not always).

Module functions operate under the general rule that data stored directly
as a workspace attribute is unprocessed, user-supplied data. Derived data
is then stored in a sub-workspace. Module functions will usually create
a sub-workspace to store their own output in, for example the struc module
places it’s output (brain extractions, segmentations) in the wsp.structural
sub-workspace.

For example the calib module contains the calibrate function which
calibrates a perfusion image to physical units using either voxelwise or reference
region methods. It reads parameters required for this from the workspace, including
the calibration method to use.

Most of these functions write their output back into the workspace under a standard
name, however in some cases the function might be called on different input images
and might therefore return an image directly, which can be added to the workspace
by the caller under whatever name they prefer



Command line tools

Most modules include a main() function which implements a command line
tool to wrap the module functionality. For example the preproc module
implements the oxasl_preproc command line tool which can be used to
do simple preprocessing of ASL data, such as the following to perform
label-control subtraction:

oxasl_preproc -i asldata.nii.gz --nplds=5 --diff -o asldata_diff.nii.gz







Current ASL processing modules



	basil - ASL Bayesian Model fitting using the Fabber code


	calib - Calibration of perfusion data using voxelwise or reference region methods


	corrections - Calculate and apply corrections (motion, distortion)


	mask - Calculation of a suitable mask for brain data


	pipeline - Unified processing pipeline for ASL brain data


	preproc - Basic ASL preprocessing (label-control subtraction, etc)


	reg - Registration between ASL, structural and standard spaces


	region_analysis - Summary stats within ROIs









Other modules



	image - Definition of the main AslImage class


	reporting - Generation of HTML reports from processing operations


	workspace - Definition of the Workspace class











Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Workspace module

OXASL - Workspace to store images and data associated with a processing pipeline

This class is conceptually simple - you can store pretty much any data by setting
an attribute on the workspace and retrieve the resulting data as the same attribute.
The workspace is backed by a directory and image data is save to files rather than
store in memory.

This hides considerable complexity. Here are a few of the issues:



	To ensure that image data really is kicked out of memory we create an ImageProxy
object for each image. This simply stores the filename and metadata associated
with an image. __getattribute__ is overridden to return ImageProxy attributes
as the underlying Image.


	There is a special ImageProxy for an AslImage. This might go away if we can
represent the full state of an AslImage using metadata alone.







Copyright (c) 2008-2020 Univerisity of Oxford


	
class oxasl.workspace.AslImageProxy(fname, md=None)

	Reference to a saved AslImage and it’s metadata


	
img()

	Return an AslImage object from the file and stored metadata










	
class oxasl.workspace.ImageProxy(fname, md=None)

	Reference to a saved Image and it’s metadata


	
img()

	Return an Image object by loading from the file










	
class oxasl.workspace.Workspace(savedir=None, input_wsp='input', parent=None, search_childs=('filter', 'corrected', 'preproc', 'input'), auto_asldata=False, **kwargs)

	A workspace for data processing

The contents of a workspace are modelled as attributes on the workspace
object. An initial set of contents can be specified using keyword arguments.
For command line tools, typically these are provided directly from the
OptionParser results, e.g.


options, args = parser.parse_args(sys.argv)
wsp = Workspace(**vars(options))




A workspace is always associated with a physical directory. Certain types of
objects are automatically be saved to the workspace. If no save directory
is specified a temporary directory is created

Supported types are currently:



	fsl.data.image.Image - Saved as Nifti


	2D Numpy array - Saved as ASCII matrix







All other attributes are serialized to YAML and stored in a special
_oxasl.yml file.

To avoid saving a particular item, use the add method rather than
directly setting an attribute, as it supports a save option.


	
ifnone(attr, alternative)

	Return the value of an attribute, if set and not None, or
otherwise the supplied alternative






	
set_item(name, value, save=True, save_name=None, save_fn=None)

	Add an item to the workspace

Normally this is achieved by assigning to an attribute
directly, however this function exists to allow greater control
where required.

The item will be set as an attribute on the workspace
If a save directory is configured and the value is a supported
type it will be saved there. This can be disabled by setting save=False


	Parameters

	
	name – Name, must be a valid Python identifier


	value – Value to set


	save – If False, do not save item


	save_name – If specified, alternative name to use for saving this item


	save_fn – If specified, Callable which generates string representation of
value suitable for saving the item to a file













	
sub(name, parent_default=True, **kwargs)

	Create a sub-workspace, (i.e. a subdir of this workspace)

This inherits the log configuration from the parent workspace. The savedir
will be a subdirectory of the original workspace. Additional data may be
set using keyword arguments. The child-workspace will be available
as an attribute on the parent workspace.


	Parameters

	
	name – Name of sub workspace


	parent_default – If True, attribute values default to the parent workspace
if not set on the sub-workspace

















	
oxasl.workspace.matrix_to_text(mat)

	Convert matrix array to text using spaces/newlines as col/row delimiters






	
oxasl.workspace.mkdir(dirname, fail_if_exists=False, warn_if_exists=True, log=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

	Create a directory, including necessary subdirs






	
oxasl.workspace.text_to_matrix(text)

	Convert space or comma separated file to matrix








          

      

      

    

  

    
      
          
            
  
AslImage module

OXASL -  Classes for representing ASL data and constructing instances from command line parameters

Copyright (c) 2008-2020 Univerisity of Oxford


	
class oxasl.image.AslImage(image, name=None, **kwargs)

	Subclass of fsl.data.image.Image which adds ASL structure information

An AslImage contains information about the structure of the data enabling it to perform
operations such as reordering and label/control differencing.

As a minimum you must provide a means of determining the number of TIs/PLDs in the data.
Specifying the data format and ordering explicitly is recommended, but a default ordering will be
used (with a warning) if you do not.

Ordering can be defined in two ways:


	Setting the order parameters to a sequence of characters (case insensitive):






	l - Labelling images (e.g. label/control pairs, sequence of multi-phases, vessel encoding cycles)


	t - TIs/PLDs


	r - Repeats


	e - TEs (optional)




The sequence is in order from fastest varying (innermost grouping) to slowest varying (outermost
grouping). If l is not included this describes data which is already differenced.





	Specifying the ibf option






	
	ibf - rpt Blocked by repeats, i.e. first repeat of all TIs, followed by second repeat of all TIs…

	tis Blocked by TIs/PLDs, i.e. all repeats of first TI, followed by all repeats of second TI…
When using –ibf, the labelling images (e.g. label/control pairs) are always adjacent












The data format is defined using the iaf parameter:



	iaf - tc = tag then control, ct = control then tag, mp = multiphase,
ve = vessel encoded, vediff = Pairwise subtracted vessel encoded, diff = already differenced,
hadamard` = Hadamard encoded, ``quant = already quantified








	Variables

	
	nvols – Number of volumes in data


	iaf – Data format - see above


	order – Data ordering string - see above


	ntc – Number of labelling images in data (e.g. 2 for TC pairs, 1 for differenced data,
for vessel encoded or multiphase data the number of encoding cycles/phases, for Hadamard data the
size of the Hadamard matrix, e.g. 8)


	casl – If True, acquisition was CASL/pCASL rather than PASL


	phases – List of phases for multiphase data (iaf='mp')


	ntis – Number of TIs/PLDs


	tis – Optional list of TIs


	plds – Optional list of PLDs


	have_plds – True if PLDs were provided rather than TIs


	tau – Bolus durations - one per TI/PLD. If have_plds is True, tis are derived by adding the bolus duration to the PLDs


	rpts – Repeats, one value per TI (may be given as a constant but always stored as list)


	slicedt – Increase in TI/PLD per slice in z dimension for 2D acquisitions (default: 0)


	sliceband – Number of slices per band for multiband acquisitions (default: None)


	artsupp – If True, data was acquired with arterial suppression









	
derived(image, name=None, suffix='', **kwargs)

	Create a derived ASL image based on this one, but with different data

This is only possible if the number of volumes match, otherwise we cannot
use the existing information about TIs, repeats etc. If the number of volumes
do not match a generic Image is returned instead

Any further keyword parameters are passed to the AslImage constructor, overriding existing
attributes, so this can be used to create a derived image with different numbers of
repeats, etc, provided the data is consistent with this.

Note that the image space does not have to match, however in this case the ‘header’
kwarg should be passed to create the new image header


	Parameters

	
	data – Numpy data for derived image


	name – Name for new image (can be simple name or full filename)


	suffix – If name not specified, construct by adding suffix to original image name






	Returns

	derived AslImage. However if the AslImage constructor fails, a basic
fsl.data.image.Image is returned and a warning is output.










	
diff(name=None)

	Perform tag-control subtraction.

Data will be reordered so the tag/control pairs are together

Note that currently differencing is not supported for multiphase or vessel encoded data.
For Hadamard data, the output will be the decoded sub-boli images.


	Parameters

	name – Optional name for returned image. Defaults to original name with suffix _diff



	Returns

	AslImage instance containing differenced data










	
get_vol_index(label_idx, ti_idx, rpt_idx, te_idx=0, order=None)

	Get the volume index for a specified label, TI and repeat index


	Parameters

	
	label_idx – Label index starting from 0, e.g. for iaf=ct 0 would be the control image,
for iaf=mp 3 would be the 4th phase encoded image


	ti_idx – TI/PLD index, starting from 0


	rpt_idx – Repeat index, starting from 0


	te_idx – TE index for multi-TE data, starting from 0


	order – If specified use custom data ordering string (does not change ordering
within this AslImage - use reorder for that)













	
is_var_repeats()

	
	Returns

	True if this data set has repeats which vary by time point










	
mean(name=None)

	Take the mean across all volumes

This takes a naive mean without differencing or grouping by TIs


	Parameters

	name – Optional name for returned image. Defaults to original name with suffix _mean



	Returns

	3D fsl.data.image.Image. Not an AslImage as timing information has been lost










	
mean_across_repeats(name=None, diff=True)

	Calculate the mean ASL signal across all repeats


	Parameters

	
	name – Optional name for returned image. Defaults to original name with suffix _mean


	diff – If False do not difference the data before taking the mean (default: True)






	Returns

	Label-control subtracted AslImage with one volume per TI/PLD










	
metadata_summary()

	Generate a human-readable dictionary of metadata


	Returns

	Dictionary mapping human readable metadata name to value (e.g. ‘Label type’
might map to ‘Label-control pairs’). The keys and values are not guaranteed
to be fixed and should not be parsed - use the instance attributes instead.










	
perf_weighted(name=None)

	Generate a perfusion weighted image by taking the mean over repeats and then
the mean over TIs


	Parameters

	name – Optional name for returned image. Defaults to original name with suffix _pwi



	Returns

	3D fsl.data.image.Image. Not an AslImage as timing information lost










	
reorder(out_order=None, iaf=None, name=None)

	Re-order ASL data

The order is defined by a string in which
r=repeats, l=labelling images, and t=tis/plds.
The first character is the fastest varying

So for a tag-control data set with 3 TIs and 2 repeats an order of “ltr” would be:
TC (TI1), TC (TI2), TC (TI3), TC(TI1, repeat 2), TC(TI2 repeat 2), etc.






	
single_ti(ti_idx, order=None, name=None)

	Extract the subset of data for a single TI/PLD

FIXME will not correctly set have_plds flag in output if input has PLDs


	Parameters

	
	ti_idx – Index of the TI/PLD required starting from 0


	order – If specified the ordering string for the returned data


	name – Optional name for returned image. Defaults to original name with
suffix _ti<n> where <n> is the TI/PLD index






	Returns

	AslImage instance containing data only for the selected TI/PLD










	
split_epochs(epoch_size, overlap=0, time_order=None)

	Split ASL data into ‘epochs’ of a specified size, with optional overlap






	
summary(log=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

	Write a summary of the data to a file stream


	Parameters

	log – Stream-like object to write the summary to. Defaults to sys.stdout














	
class oxasl.image.Options(fname_opt='-i')

	OptionGroup which contains options for describing an ASL image


	
groups(parser)

	
	Parameters

	parser – OptionParser instance



	Returns

	Sequence of OptionGroup instances for this category of options














	
oxasl.image.data_order(iaf, ibf, order, multite=False)

	Determine the data format and ordering from iaf and ibf options

If iaf is not specified (None or empty string), TC pairs are specified if the
order parameter is given and contains the l character. Otherwise differenced
data is assumed.

If neither ibf nor order are specified, ibf=rpt is guessed.

If iaf is not diff and order does not include the ``l` character it is assumed
that the encoded images (e.g. TC pairs) are the fastest varying.

If any parameters had to be guessed (rather than inferred from other information) a
warning is output.


	Returns

	Tuple of: IAF (ASL format, ‘tc’, ‘ct’, ‘diff’, ‘quant’, ‘ve’, ‘vediff’, ‘hadamard’ or ‘mp’), ordering (sequence of
2 or three chars, ‘l’=labelling images, ‘r’=repeats, ‘t’=TIs/PLDs, ‘e’=TEs. The characters
are in order from fastest to slowest varying), Boolean indicating whether the block
format needed to be guessed










	
oxasl.image.summary(img, log=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)

	Write a summary of an Image to a stream

For an AslImage the summary method is used which displays all the ASL data in human
readable form. For generic Image objects just basic information is displayed


	Parameters

	
	img – fsl.data.image.Image object which may or may not be an AslImage


	log – Stream-like object - default is sys.stdout















          

      

      

    

  

    
      
          
            
  
Registration module

OXASL - Registration for ASL data

Copyright (c) 2008-2020 Univerisity of Oxford


	
class oxasl.reg.Options(**kwargs)

	OptionCategory which contains options for registration of ASL data to structural image


	
groups(parser)

	
	Parameters

	parser – OptionParser instance



	Returns

	Sequence of OptionGroup instances for this category of options














	
oxasl.reg.change_space(wsp, img, target_space, source_space=None, **kwargs)

	Convert an image to a different space

Note that while the source space can be determined from the image, this may
not be correct if images (e.g. ASL and calibration) share the same voxel->world
transformation but still need registration to one another


	Parameters

	
	wsp – Workspace object


	img – Image


	target_space – Either an Image in the target space, or the name of the target space


	src_space – If specified, explicit indication of source image space













	
oxasl.reg.get_img_space(wsp, img)

	Find out what image space an image is in

Note that this only compares the voxel->world transformation matrix to the
reference image for each space. It is quite possible for two images to be in
the same space but not be registered to one another. In this case, 
the returned space may not be accurate when determining whether a registration
is required.


	Parameters

	
	wsp – Workspace object


	img – Image






	Returns

	Name of image space for img, e.g. asl, struc










	
oxasl.reg.get_ref_imgs(wsp, use_quantification_wsp=None)

	Get the images that define the various processing ‘spaces’ and are used for registration
to/from these spaces. The built in spaces are ‘asl’ (aka ‘native’) ‘struc’ and ‘std’ (MNI).

Note that the ‘custom’ space requires a user-specified reference image and transformation
from structural space

aslref defines the ‘asl’ space



	aslref : User-supplied registration reference image


	aslref_method : Method for choosing registration reference image


	asldata : Raw ASL data


	calib   : Calibration image









	aslref    : Registration reference image in ASL space


	strucref     : Registration reference image in structural space


	stdref       : Registration reference image in standard space












	
oxasl.reg.get_transform_params(mat)

	Get motion parameters from a Flirt motion correction matrix

This is done under the assumption that the matrix may contain
rotation, translation and possibly minor scaling but no reflection,
shear etc. So the output could be incorrect for some extreme
correction matrices, but this probably indicates an error in the
registration process. We wrap the whole thing in a try block so
if anything goes horribly wrong it does not at least stop the
pipeline running

See http://en.wikipedia.org/wiki/Rotation_matrix for details
of the rotation calculation.


	Returns

	Tuple of magnitude of translation, angle and rotation axis










	
oxasl.reg.main()

	Entry point for command line tool






	
oxasl.reg.reg_asl2calib(wsp)

	Register calibration image to ASL space

Note that this might already have been done as part of motion correction






	
oxasl.reg.reg_asl2custom(wsp)

	Register custom output image to ASL space, via structural.

If no output_custom_mat (struc -> custom) has been provided, then
FLIRT will be used to generate this. The transformation from ASL space
is the concatenation of asl2struc and struc2custom.






	
oxasl.reg.reg_asl2struc(wsp, flirt=True, bbr=False, name='initial')

	Registration of ASL images to structural image


	Parameters

	
	flirt – If provided, sets whether to use FLIRT registration


	bbr – If provided, sets whether to use BBR registration










	aslref            : Registration reference image in ASL space


	struc              : Structural image









	asl2struc    : ASL->structural transformation matrix


	struc2asl    : Structural->ASL transformation matrix


	regto        : aslref image transformed to structural space












	
oxasl.reg.reg_bbr(wsp)

	Perform BBR registration


	Parameters

	
	reg_img – Data to register, e.g. PWI or calibration image. Normally would be brain extracted


	struc_img – Structural image


	struc_brain_img – Brain-extracted structural image








Optional keyword arguments:


	Parameters

	
	inweight – 


	init – Initial transform matrix








Optional keyword arguments for fieldmap distortion correction:


	Parameters

	
	fmap – Fieldmap image


	fmapmag – Fieldmap magnitude image


	fmapmagbrain – Fieldmap magnitude image - brain extracted


	pedir – Phase encoding direction (x, -x, y, -y, z, -z)


	echospacing – Echo spacing








:return Tuple of registered image, transform matrix






	
oxasl.reg.reg_flirt(wsp, img, ref, initial_transform=None)

	Register low resolution ASL or calibration data to a high resolution
structural image using Flirt rigid-body registration

The brain extracted structural image is used as the reference image. If
this is not supplied, BET will be run on the whole head structural image.


	Parameters

	
	reg_img – Data to register, e.g. PWI or calibration image. Normally would be brain extracted


	struc_brain_img – Brain-extracted structural image








Optional keyword arguments:


	Parameters

	
	inweight – 


	init – Initial transform matrix


	schedule – FLIRT transform schedule file (default: xyztrans.sch”)


	dof – FLIRT degrees of freedom








:return Tuple of registered image, transform matrix






	
oxasl.reg.reg_struc2std(wsp, **kwargs)

	Determine structural -> standard space registration



	structural.struc   : Structural image


	fslanat            : Path to existing FSLANAT data









	reg.struc2std    : Structural->MNI transformation matrix - either warp image or FLIRT matrix


	reg.std2struc    : MNI->structural transformation - either warp image or FLIRT matrix












	
oxasl.reg.transform(wsp, img, trans, ref, use_flirt=False, interp='trilinear', paddingsize=1, premat=None, postmat=None, mask=False, mask_thresh=0.5)

	Transform an image


	Parameters

	
	wsp – Workspace, used for logging only


	img – Image to transform


	trans – Transformation matrix or warp image


	ref – Reference image


	use_flirt – Use flirt to apply the transformation which must be a matrix


	interp – Interpolation method


	paddingsize – Padding size in pixels


	premat – If trans is a warp, this can be set to a pre-warp affine transformation matrix






	Returns

	Transformed Image object












          

      

      

    

  

    
      
          
            
  
Structural module

OXASL - Structural data module

Copyright (c) 2008-2020 Univerisity of Oxford


	
class oxasl.struc.Options

	OptionGroup which contains options for describing a structural image


	
groups(parser)

	
	Parameters

	parser – OptionParser instance



	Returns

	Sequence of OptionGroup instances for this category of options














	
oxasl.struc.run(wsp)

	Do initialization on supplied structural data - copy relevant image and do brain extraction

FIXME copy across all supplied structural data






	
oxasl.struc.segment(wsp)

	Segment the structural image








          

      

      

    

  

    
      
          
            
  
Corrections module

OXASL - Module to apply Moco/Distortion/sensitivity corrections

This module generates corrected ASL/calibration data from previously calculated
corrections with the minimum of interpolation

Currently the following sources of transformation exist:



	Motion correction of the ASL data. This generates a series of linear (rigid body)
transformations in ASL space, one for each ASL volume. If calibration data is also
present a calibration->ASL transform is also generated as part of this process


	Fieldmap-based distortion correction. This generates a nonlinear warp image
in structural space which is then transformed to ASL space


	Phase encoding reversed (CBLIP) distortion correction using TOPUP. This generates
a nonlinear warp image in ASL space FIXME calibration space?


	User-supplied nonlinear warp image for gradient distortion corection


	Sensitivity correction







Except for the TOPUP correction, all of the above can be combined in a single
transformation to minimise interpolation of the ASL data

Copyright (c) 2008-2020 Univerisity of Oxford


	
class oxasl.corrections.Options

	Options for corrections of the input data


	
groups(parser)

	
	Parameters

	parser – OptionParser instance



	Returns

	Sequence of OptionGroup instances for this category of options














	
oxasl.corrections.correct_img(wsp, img, linear_mat)

	Apply combined warp/linear transformations to an image in ASL space


	Parameters

	
	img – fsl.data.image.Image to correct


	linear_mat – img->ASL space linear transformation matrix.






	Returns

	Corrected Image





If a jacobian is present, also corrects for quantitative signal magnitude as volume has been locally scaled

FIXME there are slight differences to oxford_asl here due to use of spline interpolation rather than
applyxfm4D which uses sinc interpolation.



	asldata_mean : Mean ASL image used as reference space









	total_warp      : Combined warp image


	jacobian        : Jacobian associated with warp image


	senscorr        : Sensitivity correction












	
oxasl.corrections.run(wsp)

	Apply distortion and motion corrections to ASL and calibration data



	asldata_orig : Uncorrected ASL data image









	calib_orig      : Calibration image


	cref_orig       : Calibration reference image


	cblip_orig      : Calibration BLIP image


	asldata_mc_mats : ASL motion correction matrices


	calib2asl       : Calibration -> ASL transformation matrix


	distcorr_warp   : Distortion correction warp image


	gdc_warp        : Gradient distortion correction warp image









	asldata    : Corrected ASL data


	calib      : Corrected calibration image


	cref       : Corrected calibration reference image


	cblip      : Corrected calibration BLIP image














          

      

      

    

  

    
      
          
            

   Python Module Index


   
   o
   


   
     		 	

     		
       o	

     
       	[image: -]
       	
       oxasl	
       

     
       	
       	   
       oxasl.corrections	
       

     
       	
       	   
       oxasl.image	
       

     
       	
       	   
       oxasl.reg	
       

     
       	
       	   
       oxasl.struc	
       

     
       	
       	   
       oxasl.workspace	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | G
 | I
 | M
 | O
 | P
 | R
 | S
 | T
 | W
 


A


  	
      	AslImage (class in oxasl.image)


  

  	
      	AslImageProxy (class in oxasl.workspace)


  





C


  	
      	change_space() (in module oxasl.reg)


  

  	
      	correct_img() (in module oxasl.corrections)


  





D


  	
      	data_order() (in module oxasl.image)


  

  	
      	derived() (oxasl.image.AslImage method)


      	diff() (oxasl.image.AslImage method)


  





G


  	
      	get_img_space() (in module oxasl.reg)


      	get_ref_imgs() (in module oxasl.reg)


      	get_transform_params() (in module oxasl.reg)


      	get_vol_index() (oxasl.image.AslImage method)


  

  	
      	groups() (oxasl.corrections.Options method)

      
        	(oxasl.image.Options method)


        	(oxasl.reg.Options method)


        	(oxasl.struc.Options method)


      


  





I


  	
      	ifnone() (oxasl.workspace.Workspace method)


      	ImageProxy (class in oxasl.workspace)


  

  	
      	img() (oxasl.workspace.AslImageProxy method)

      
        	(oxasl.workspace.ImageProxy method)


      


      	is_var_repeats() (oxasl.image.AslImage method)


  





M


  	
      	main() (in module oxasl.reg)


      	matrix_to_text() (in module oxasl.workspace)


      	mean() (oxasl.image.AslImage method)


  

  	
      	mean_across_repeats() (oxasl.image.AslImage method)


      	metadata_summary() (oxasl.image.AslImage method)


      	mkdir() (in module oxasl.workspace)


  





O


  	
      	Options (class in oxasl.corrections)

      
        	(class in oxasl.image)


        	(class in oxasl.reg)


        	(class in oxasl.struc)


      


      	oxasl (module)


  

  	
      	oxasl.corrections (module)


      	oxasl.image (module)


      	oxasl.reg (module)


      	oxasl.struc (module)


      	oxasl.workspace (module)


  





P


  	
      	perf_weighted() (oxasl.image.AslImage method)


  





R


  	
      	reg_asl2calib() (in module oxasl.reg)


      	reg_asl2custom() (in module oxasl.reg)


      	reg_asl2struc() (in module oxasl.reg)


      	reg_bbr() (in module oxasl.reg)


  

  	
      	reg_flirt() (in module oxasl.reg)


      	reg_struc2std() (in module oxasl.reg)


      	reorder() (oxasl.image.AslImage method)


      	run() (in module oxasl.corrections)

      
        	(in module oxasl.struc)


      


  





S


  	
      	segment() (in module oxasl.struc)


      	set_item() (oxasl.workspace.Workspace method)


      	single_ti() (oxasl.image.AslImage method)


  

  	
      	split_epochs() (oxasl.image.AslImage method)


      	sub() (oxasl.workspace.Workspace method)


      	summary() (in module oxasl.image)

      
        	(oxasl.image.AslImage method)


      


  





T


  	
      	text_to_matrix() (in module oxasl.workspace)


  

  	
      	transform() (in module oxasl.reg)


  





W


  	
      	Workspace (class in oxasl.workspace)


  







          

      

      

    

  

    
      
          
            
  
Arterial Spin Labelling Practical

In this practical you will learn how to use the BASIL tools in FSL
to analyse ASL data, specifically to obtain quantitative images of
perfusion (in units of ml/100 g/min), as well as other haemodynamic
parameters. For the puproses of the practical you will be instructed
to use the BASIL GUI, all of the same analyses (and more) can be
achieved using command line tools, as you will see in the
accompanying lecture.

This practical is a shorter version of the
examples that accompany the Primer: Introduction to Neuroimaging
using Arterial Spin Labelling. On the website for the primer you can
find more examples than we have time for on the FSL course,
including instructions for using both the GUI and command line
tools.

http://www.neuroimagingprimers.org/examples/introduction-primer-example-boxes/

NOTE that if you are following this practial outside of the FSL
course you should ensure you are using the pre-release of BASIL
alongside a recent version of FSL v5. This can be found by following
a link from the FSL website:

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BASIL


Contents


	Perfusion quantification using Single PLD pcASL


	The data


	Look at the data


	A Perfusion-Weighted Image


	(Simple) Perfusion Quantification






	Improving the Perfusion Images from single PLD pcASL


	Motion and Distortion correction


	Making use of Structural Images


	Different model and calibration choices


	Partial Volume Correction






	Perfusion Quantification (and more) using Multi-PLD pcASL


	The data


	Perfusion Quantification


	Arterial/Macrovascular Signal Correction






	Partial Volume Correction







Perfusion quantification using Single PLD pcASL

The aim of this exercise is to perform perfusion quantification
with one of the most widely recommened variants of ASL. Single PLD
pcASL is now regarded as sufficiently simple and reliable, both for
acquisition and analysis, that it is the first option most people
should consider when using ASL for the first time. Although more can be done with other ASL variants,
particularly when acquisition time allows.


The data

Take a look inside the data directory:

cd ~/fsl_course_data/ASL
ls





This dataset used pcASL labeling and we are going to start
with data collected using a single post-label delay. This dataset
follows as closely as possible the
recommendations of the ASL Consensus Paper (commonly called the
‘White Paper’) on a good general purpose
ASL acquisition, although we have chosen to use a 2D mutli-slice
readout rather than a full-volume 3D readout.

The files you will need to begin with are:



	spld_asltc.nii.gz - the label-control ASL series containing 60
volumes. That is 30 label and 30 control, in pairs of alternating images with
label first.


	aslcalib.nii.gz - the calibration image, a (largely) proton-density
weighted image with the same readout (resolution etc) as the main
ASL data. The TR for this data is 4.8 seconds, which means there
will be some T1 weighting.


	aslcalib_PA.nii.gz - another calibration image,
identical to aslcalib.nii.gz apart from the use of
posterior-anterior phase encoding (anterior-posterior was used in
the rest of the ASL data). This is provided for distortion
correction.


	T1.nii.gz - the T1-weigthed anatomical of the same
subject.









Look at the data

It is always a good idea to take a look at the raw data just to
check that nothing has gone horribly wrong in the acquisition and
ensure you know exactly what you are dealing with.

There are two separate files that contain the ASL data we need:



	spld_asltc.nii.gz


	aslcalib.nii.gz







View these images in fsleyes:

fsleyes aslcalib.nii.gz -dr 0 1500 spld_asltc.nii.gz -dr 0 1500





Notice that:



	There is a marked intensity difference between the calibration image and the label-control data. This is because background suppression was applied when acquiring the label-control data, as recommended by the ASL consensus paper, to reduce the influence of motion and physiological noise sources.


	It is very hard to spot differecnes between label and control
images - try using the movie mode of fsleyes, you might find it
helpful to set the display range for the spld_asltc.nii.gz image as 0 to
500 now.


	There is an alternating pattern in the timeseries of the
label-control data, but it is small compared to the mean signal
intensity in any given voxel. To see this use the timeseries mode in
fsleyes, you will need to choose a voxel in cotrical gray matter
(where there will be the largest perfusion signal) e.g. [20,14,13].








Note

If movie mode does not seem to work in FSLeyes, try turning off
Synchronise movie updates in the View Settings window (accessed
by clicking on the spanner icon).





A Perfusion-Weighted Image

Since the data looks okay we can proceed to the calculation of a
perfusion-weighted image (PWI). For this we will use the ‘preview’
feature of the BASIL GUI, essentially we are generating the PWI to check
that the data is okay for further analysis.

To launch the GUI at the command line you will need to type
asl_gui. Note that if you have downloaded the
‘pre-release’ yourself, you may need to provide a path to the
installed version of the GUI, e.g. /Users/{blah}/Downloads/oxford_asl/asl_gui

Once it has launched you
will find yourself on the ‘Input Data’ tab, you
should:



	Load the ASL data spld_asltc.nii.gz as the ‘Input Image’.


	Set the ‘Number of PLDs’, which in this case is 1, this is already done by default.


	Click the ‘Update’ button beneath the ‘Data Preview’ pane on the right.







At this point the GUI should look like the screen shot below* and
a PWI will have appeared in the ‘Data Preview’ pane. This this is reassuring, if we didn’t see something that
looks roughly like this, we might check if the data order that the
GUI is expecting matches that in the data. We could alter the ‘Data
order’ settings if needed and update the preview again.


Note

If the image does not update automatically after clicking
‘Update’ try re-sizing the GUI window slightly and that should force
it to redraw.



[image: BASIL GUI previewing perfusion-weighted image]
Note also, beneath the ‘Data Preview’, that there is a ‘Data order
preview’. The idea of this graphic is to help visually to confirm
that the way that the GUI is intepreting the ordering of volumes in
the data matches what you are expecting. In this case we have a
single PLD repeated 30 times with the label and control images
paired in the data (this is pretty common). What the ‘Data order
preview’ shows is the first instance of the PLD in purple, showing
both the label and control (hatched) volume. Each subsequent repeat
of the same PLD is coloured green, again showing that we have a
label follwed by control (hatched) volume.

You can try a different ‘Data order’ option to see what
happens. Change ‘Label/Control pairs’ from ‘Label then control’ to
‘Control then label’. This switches the expected order of label and
control images within the pair. If you then udpate the preview you
will find that the contrast reverses, the perfusion now has the
wrong ‘sign’.



(Simple) Perfusion Quantification

We have checked the PWI, thus we
can proceed to final quantification of perfusion, inverting the
kinetics of the ASL label delivery and using the calibration
image to get values in the units of ml/100g/min.

To do this we need to tell the BASIL GUI some information about the
data and the analysis we want to perform.

On the ‘Input Data’ tab we need to sepcify the ‘Acquisition parameters’:



	Labelling - cASL/pcASL (the deafult option).


	Bolus duration (s) - 1.8 (default).


	PLDs (s) - 1.8 (default).


	Readout - 2D multi-slice (you will need to set this).


	Time per slice (ms) - 45.2 (only appears when you change the Readout option).







You can now hit ‘Next’ and you will be taken to the next tab. For
this (simple) analysis we do not want to use a structural image, so
we can move on by clicking ‘Next’ again. Or we could skip stright to
the ‘Calibration’ tab using the menu across the top.

On the ‘Calibration’ tab, ‘Enable Calibration’ first, then load
the calibration image aslcalib.nii.gz. Change the
‘Calibration mode’ to ‘voxelwise’, and set the ‘Sequence TR (s)’ to
be 4.8.

[image: BASIL GUI Calibration]
Finally, we need to set the analysis options: either skip to the
‘Analysis’ tab or click ‘Next’ twice.

On the ‘Analysis’ tab, choose an output directory name, e.g.,
oxasl. And, select ‘Analysis which conforms to White
Paper’, so that we know the analysis is using the same default
parameter values proposed in the ‘ASL White Paper’ quantification
formula. Note that in the lower left corner the GUI is now telling
us that we are ‘Ready to Go’. At this point you can click ‘Run’ in
the lower right corner.

[image: BASIL GUI Analysis]
The output of the oxford_asl command line tool is shown in a
pop-up window. You can ignore any erfc underflow error messages
- they are harmless and occur because we haven’t provided any
structural data

This analysis should only take a few minutes, but while you are
waiting you can read ahead and even start changing the options in
the GUI ready for the next analysis that we want to run.

Once the analysis had completed, view the final result:

fsleyes oxasl/output/native/calib_refregion/perfusion_calib.nii.gz





Note that if you just supply a name for the output directory (not
a full path), as we have here, this will be placed in the ‘working
directory’, i.e. whichever directory you were in when you launched
the GUI.

You will find something that looks very similar to the PWI we viewed before, but now the values at every voxel are in ml/100g/min.

You will also find a PWI saved as
oxasl/output/native/perfusion. This is very similar to the
PWI displayed in the preview pane, except that the kinetic
model inversion has been applied to it, this is the image
pre-calibration.




Improving the Perfusion Images from single PLD pcASL

The purpose of this practical is essentially to do a better job of
the analysis we did above, exploring more of the features of the GUI
including things like motion and distortion correction.


Motion and Distortion correction

Go back to the GUI which should still be setup from the last
analysis you did (if you have closed it follow the steps above to
repeat the setup - but do not click run).

On the ‘Distortion Correction’ tab, select ‘Apply distortion
correction’. Load the ‘Phase-encode-reveresed calibration image’
aslcalib_PA.nii.gz. Set the ‘Effective EPI echo
spacing’ (also known as the dwell time) to 0.95ms and the ‘Phase encoding direction’ to ‘y’.


[image: BASIL GUI previewing perfusion-weighted image]



On the ‘Analysis’ tab, select ‘Motion Correction’. Make sure you
have ‘Adaptive spatial regularisation on perfusion’ selected (it is
by default). This will reduce the appearance of noise in the final
perfusion image using the
minimum amount of smoothing appropriate for the data.

You might like
the change the name of the output directory at this point, so that
you can comapre to the previous analysis.

Now click ‘Run’.


[image: BASIL GUI Analysis]



For this analysis we are still in ‘White
Paper’ mode. Specifically this means we are using
the simplest kinetic model, which assumes that all delivered blood-water has
the same T1 as that of the blood and that the Arterial Transit Time should be
treated as 0 seconds.

As before, the analysis should only take a few minutes, slightly
longer this time due to the distortion and motion correction. Like the
last exercise you might want to skip ahead and start setting up the
next analysis.

To view the final result:

fsleyes oxasl/output/native/calib_refregion/perfusion.nii.gz





The result will be similar to the analysis in Example 1 although the effect of distortion
correction should be noticeable in the anterior portion of the
brain. The effects of motion correction are less obvious, this
data does not have a lot of motion corruption in it.



Making use of Structural Images

Thus far, all of the analyses have relied purely on the ASL data
alone. However, often you will have a (higher resolution) structural
image in the same subject and would like to use this as well, at the
very least as part of the process to transform the perfusion images into some
template space.

We can repeat the analysis above but now providing structural
information. The recommended way to do
this is to take your T1 weighted structural image (which is most
common) and firstly process using fsl_anat, passing the
output directly from that tool BASIL.

For this practical fsl_anat has already been run for
you and you will find the output in the data directory as ~/fsl_course_data/ASL/T1.anat

Go back to the analysis you have setup above. On the ‘Structure’
tab, for ‘Structural data from’ select ‘Existing FSL_ANAT
output’. Then for the ‘Existing FSL_ANAT output’ choose
T1.anat.


[image: BASIL GUI Structure]



This analysis will take somewhat longer overall (potentailly
15-20 mins), the extra time
is taken up doing careful registration between ASL and structural
images. Thus, this is a good point to keep reading on and leave the
analysis runnning.

You will find some new results in the output
directory:



	oxasl/output/struct - this sub-drectory contains results
transformed into the same space as the structural image. The
files in here will match those in the native
subdirectory of the earlier analysis, i.e., containing perfusion
images with and without calibration.


	oxasl/output/native/asl2struct.mat - this is the
(linear) transformation between ASL and structural space. It can be
used along with a transformation between structural and template
space to transform the ASL data into the template space. It was used
to create the results in oxasl/struct_space.


	oxasl/output/native/calib_refrgion/perfusion_gm_mean.txt -
this contains the result of calculating the perfusion within a gray
matter mask, these are in ml/100g/min. The mask was derived from the partial volume estimates
created by fsl_anat and transformed into ASL space
followed by thresholding at 70%. This is a helpful check on the
absolute perfusion values found and it is not aytpical too see
values in the range 30-50 here. There is also a white matter result
(for which a threshold of 90% was used).


	oxasl/output/native/gm_mask.nii.gz - this is the gray
matter mask used in the above calculations. There is also the
associated white matter mask.


	oxasl/output/native/gm_roi.nii.gz - this is another
mask that represents areas in which there is some grey matter (at
least 10% from the partial volume estimates). This can be useful for
visualisation, but mainly when looking at partial volume corrected
data.









Different model and calibration choices

Thus far the calibration to get perfsion in units of ml/100g/min
has been done using a voxelwise division of the realtive perfusion
image by the (suitably corrected) calibration image - so called
‘voxelwise’ calibration. This is in keeping with the recommendations
of the ASL White Paper for a simple to implement quantitative
analysis. However, we could also choose to use a reference tissue to
derive a single value for the equilibrium magnetization of arterial
blood and use that in the calibration process.

Go back to the analysis you have already set up. We are now going
to turn off ‘White Paper’ mode, this will provide us with more
options to get a potentially more accurate analysis. To do this return to the ‘Analysis’ tab
and deselect the ‘White Paper’ option, you will see that the
‘Arterial Transit Time’ goes from 0 seconds to 1.3 seconds (the
default value for pcASL in BASIL based on our experience with pcASL
labeling plane placement) and the ‘T1’ value (for tissue) is
different to ‘T1b’ (for arterial blood), since the Standard (aka
Buxton) model for ASL kinetics considers labeled blood both in the
vascualture and the tissue.

[image: BASIL GUI Analysis]
Now that we are not in ‘White Paper’ mode we can also change the
calibration method. On the ‘Calibration’ tab, change the ‘Calibration mode’ to ‘Reference
Region’. Now all of the ‘Reference tissue’ options will become
available, but leave these as they are: we will accept the default
option of using the CSF (in the ventricles) for calibration.

[image: BASIL GUI Calibration]
You could click ‘Run’ now and wait for the analysis to
complete. But, in the interests of time we will save ourselves the
bother of doing all of the registration all over again. Before
clicking run, therefore, do:



	On the ‘Calibration’ tab select ‘Mask’ and load
csfmask.nii.gz from the data directory. This is a ready
prepared ventricular mask for this subject. (in fact it is precisely
the mask you would get if you ran the analysis as setup above).


	Go back to the ‘Structure’ tab and choose ‘None’ for ‘Structural
data from’. This will turn off all of the registration
processes.


	You might also like to choose a different output directory name,
so that you can comapre with the previous analysis.







While this is running you might want to read ahead, or if you
are keen to keep moving through the examples, then skip this
analysis and keep going.

The resulting perfusion images should look very similar to those
produced using the voxelwise calibration, and the absolute values
should be similar too. For this, and many datasets, the two methods
are broadly equivalent. You can check on some of the interim
calcuations for the calibration by looking in the
oxasl/calib subdirectory: here you will find the value
of the estimated equilirbirum mangetization of arterial blood for
this dataset in M0.txt and the reference tissue mask in
refmask.nii.gz. It is worth checking that the latter
does indeed only lie in the venticles when overlaid on an ASL image
(e.g. the perfusion image or the calibration image), it should be
conservative, i.e., only select voxels well within the ventricles
and not on the boundary with white matter.



Partial Volume Correction

Having dealt with structural image, and in the process obtained
partial volume estimates, we are now in a position to do partial
volume correction. This does more than simply attempt to estimate
the mean perfusion within the grey matter, but attempts to derive and
image of gray matter perfusion directly (along with a separate image
for white matter).

This is very simple to do via the GUI. Return to your earlier
analysis. You will need
to revist the ‘Structure’ tab and reload the T1.anat
result as you did above, the partial volume estimates produced by
fsl_anant (in fact they are done using fast)
are needed for the correction. On the ‘Analysis’ tab,
select ‘Partial Volume Correction’. That is it! You might not want to
click ‘Run’ at this point becuase partial volume correction takes
substantially longer to run.

You will find the results of this analysis already completed for
you in the directory ~/fsl_course_data/ASL/oxasl_spld_pvout. In this results directory you will still find an analysis performed
without partial volume correction in oxasl/output/native
as before. The results of partial volume correction can be found in
oxasl/output/native/pvcorr. This new subdirectory has the
same structure as the non-corrected results, only now
perfusion_calib.nii.gz is an estimate of perfusion only
in gray matter, it has been joined by a new set of images for the
estimation of white matter perfusion, e.g.,
perfusion_wm_calib.nii.gz. It may be more helpful to look at
perfusion_calib_masked.nii.gz (and the equivalent
perfusion_wm_calib_masked.nii.gz) since this has been
masked to include only voxels with more than 10% gray matter (or white
matter), i.e., voxels in which it is reasonable to interpret the gray
matter (white matter) perfusion values.




Perfusion Quantification (and more) using Multi-PLD pcASL

The purpose of this exercise is to look at some multi-PLD pcASL. As
with the single PLD data we can obtain perfusion images, but now we
can account for any differences in the arrival of labeled blood-water
(the arterial transit time, ATT) in different parts of the brain. As we
will also see we can extract other interesting parameters, such as the
ATT in its own right, as well as arterial blood volumes.


The data

The data we will use in this section supplements the single PLD pcASL data above, adding
multi-PLD ASL in the same subject (collected in the same
session). This dataset used the same pcASL labelling, but with a
label duration of 1.4 seconds and 6 post-labelling delays of 0.25,
0.5, 0.75, 1.0, 1.25 and 1.5 seconds.

The files you will also now need are:



	mpld_asltc.nii.gz - the label-control ASL series
containing 96 volumes: each PLD was repeated 8 times, thus there are
16 volumes (label and control paired) for each PLD. The data has
been re-ordered from the way it was acquired, such that all of the
measurements from each PLD have been grouped together - it is
important to know this data ordering when doing the analysis.









Perfusion Quantification

Load the GUI (asl_gui), it is best to start a
whole new analysis as we are moving on to a new set of data and not
reuse any GUI you already have open. On the
‘Input Data’ tab, for the ‘Input Image’ load
mpld_asltc.nii.gz. Unlike the single-PLD data, we need to specify the correct number
of PLD, which is 6. At this point the ‘Number of repeats’ should
correctly read 8. Click ‘Update’ below the ‘Data preview pane’. A
perfusion-weighted image should appear - this is an average over all
the PLDs (and will thus look different to Example 1).

[image: BASIL GUI Input Data]
Note the ‘Data order preview’. For mutli-PLD ASL it is important
to get the data order specification right. In this case the default
options in the GUI are not correct. The PLDs do come as label-control
pairs, i.e. alternating label then control images. But, the default
assumption in the GUI is that a full set of the
6 PLDs has been acquired first, then this has been repeated 8
subseqeunt times, this is indcated in the preview by colouring the
first instance of a PLD as purple and subsequent as green, with
different PLDs appearing as different shades of purple (or
green). This is quite commonly how multi-PLD ASL data is acquired,
but that might not be how the data is ordered in the final image
file.

As we noted earlier, in this data all of the measurements at the
same PLD are grouped together. You need to change the ‘Grouping
order’ on the ‘Input Data’ tab: leave the first option along
(‘Label/Control pairs’) and change the second option from ‘PLDs’ to
‘Repeats’. Note that the data order preview changes to reflect the
different ordering. This is now correct: remeber that the purple
coloured entries indicate the first time that PLD was acquired.

Note that if you were to click ‘Update’ on the ‘Data preview’ nothing
changes, the ordering doesn’t affect the (simple) way in which we
have calucated the PWI. Getting a plausible looking PWI is a good sign that the data
order is correct, but it is not a guarantee that the PLD ordering is
correct, so always check carefully. One way to do this, in this
case, would be to open the data in fsleyes and look at
the timeseries: the raw intensity of both label and control images
for one PLD are different to those from another PLD (due to the
background suprresion). THe timeseries for the raw data looks like a
series of steps, indicating the repeated measurements from each PLD
are grouped together (groubed by ‘repeats’).

Once we are happy with the PWI and data order, we can set the
‘Acquisition parameters’:



	Labelling - ‘cASL/pcASL’ (default).


	Bolus duration (s) - 1.4 (shorter than the default).


	PLDs (s) - 0.25, 0.5, 0.75, 1.0, 1.254, 1.5.


	Readout - ‘2D multi-slice’ with ‘Time per slice’ 45.2.







Move to the ‘Calibration’ tab, select ‘Enable Calibration’ and as
the ‘Calibration Image’ load the aslcalib.nii.gz image
from the Single-PLD data (it is from the same subject in the same
session so we can use it here too). We have skipped the ‘Structure’
tab (to make the analysis quicker), this means if we want ‘Calibration
mode’ to be ‘Reference Region’ we need to supply a mask of the
region of tissue to use. Select ‘Mask’ and load
csfmask.nii.gz. Set the ‘Sequence TR’ to be 4.8, but
leave all of the other options alone.

[image: BASIL GUI Calibration]
Move to the ‘Distortion Correction’ tab. Select ‘Apply distortion
correction’. Load the ‘Phase-encode-reveresed calibration image’
aslcalib_PA.nii.gz from the Single-PLD pcASL data. Set the ‘Effective EPI echo
spacing’ to 0.95ms again and the ‘Phase encoding direction’ to ‘y’.

Finally, move to the ‘Analysis’ tab. Choose an output directory,
leave all of the other options alone. Click ‘Run’.

This analysis shouldn’t take a lot longer than the equivalent
single PLD analysis, but feel free to skip ahead to the next section
whilst you are waiting.

The results directory from this analysis should look similar to
that obtained for the single PLD pcASL. That is reassuring as it is the same subject. The main difference is the
arrival.nii.gz image. If you examine this image you should find a pattern of values
that tells you the time it takes for blood to transit between the
labeling and imaging regions. You might notice that the
arrival.nii.gz image was present even in the single-PLD
results, but if you looked at it contained a single value - the one
set in the Analysis tab - which meant that it
appeared blank in that case.



Arterial/Macrovascular Signal Correction

In the analysis above we didn’t attempt to model the presence of
arterial (macrovascular) signal. This is fairly
reasonable for pcASL in general, since we can only start sampling
some time after the first arrival of labeled blood-water in the
imaging region. However, given we are using shorter PLD in our
multi-PLD sampling to improve the SNR there is a much greater
likelihood of arterial signal being present. Thus, we might like to
repeat the analysis with this component included in the model.

Return to your analysis from before. On the ‘Analysis’ tab select
‘Include macro vascular component’. Click ‘Run’.

The results directory should be almost identical to the
previous run, but now we also gain some new results:



	aCBV.nii.gz and


	aCBV_calib.nii.gz







Following the convention for the
perfusion images, these are the relative and absolute arterial
(cerebral) blood volumes respectively. If you examine one of these
and focus on the more inferior slices you should see a pattern of
higher values that map out the structure of the major arterial
vasculature, including the Circle of Willis. This finding of an
arterial contribution in some voxels results in a correction to the
perfusion image - you may now be able to spot that in the same
slices where there was some evidence for arterial contamination of
the perfusion image before that has now been removed.




Partial Volume Correction

In the same way that we could do
partial volume correction for single PLD pcASL, we can do this
for multi-PLD. If anything partial volume correction should be even
better for multi-PLD ASL, as there is more information in the data to
separate grey and white matter perfusion.

Just like the single PLD case we will require structural
information, entered on the ‘Structure’ tab. We can do as we did
before and load T1.anat. On the ‘Analysis’ tab, select
‘Partial Volume Correction’.

Again, this analysis will not be very quick and so you might not
wish to click ‘Run’ right now.

You will find the results of this analysis already completed for
you in the directory
~/fsl_course_data/ASL/oxasl_mpld_pvout. This results directory contains, as a further subdirectory, pvcorr,
within the native subdirectory, the partial volume
corrected results: gray matter (perfusion_calib.nii.gz
etc) and white matter perfusion
(perfusion_wm_calib.nii.gz etc)
maps. Alongside these there are also gray and white matter ATT maps
(arrival and arrival_wm respectively). The
estimated maps for the arterial component
(aCBV_calib.nii.gz etc) are still present in the
pvcorr directory. Since this is not tissue specific there
are not separate gray and white matter versions of this parameter.

The End.





          

      

      

    

  _static/file.png





_static/minus.png





_static/down.png





_static/up-pressed.png





_static/up.png





_static/plus.png





_images/Analysis.jpeg
InputData  Structure Calibration Distortion Correction _ Analysis Data preview - perfusion weighted image

Basic analysis options
Output Directory oxasl Browse
Brain Mask

| Analysis which conforms to 'White Paper (Alsop et al 2014)

I parameter values.

Arterial Transit Time (s)

Ti(s)
Tib (s) { 165/
Inversion Efficiency 0.85/C

Analysis Options
/| Adaptive spatial regularization on perfusion
Incorporate T1 value uncertainty
Include macro vascular component

| Fix label duration Use scroll wheel to change slice, double click to change view|  Update

Partial Volume Correction

Data order preview
Motion Correction

[ Pos I Repeats Label Control

Previous

Ready to Go Run





_images/Analysis2.jpeg
InputData  Structure Calibration Distortion Correction _ Analysis Data preview - perfusion weighted image

Basic analysis options
Output Directory oxasl Browse
Brain Mask

| Analysis which conforms to 'White Paper (Alsop et al 2014)

I parameter values.

Arterial Transit Time (s)

Ti(s)
Tib (s) { 165/
Inversion Efficiency 0.85/C

Analysis Options
/| Adaptive spatial regularization on perfusion
Incorporate T1 value uncertainty
Include macro vascular component

| Fix label duration Use scroll wheel to change slice, double click to change view|  Update

Partial Volume Correction

Data order preview
| Motion Correction

[ Pos I Repeats Label Control

Previous

Ready to Go Run





_images/Analysis3.jpeg
InputData  Structure Calibration Distortion Correction _ Analysis Data preview - perfusion weighted image

Basic analysis options
Output Directory oxasl Browse
Brain Mask

Analysis which conforms to 'White Paper' (Alsop et al 2014)

Initial parameter values

Arterial Transit Time (s) 130/
Ti(s) 130/
Tib (s) { 165/
Inversion Efficiency 0.85/C

Analysis Options

/| Adaptive spatial regularization on perfusion
Incorporate T1 value uncertainty
Include macro vascular component

| Fix label duration

Use scroll wheel to change slice, double click to change view|  Update

Partial Volume Correction

Data order preview
Motion Correction

[ Pwos  [I Repeats [ Label Contral

Previous

Ready to Go Run





_images/Calib.jpeg
Input Data _Structure _Calibration
 Enable Calibration

Calibration Image aslcalib.nii.gz

MO Type Proton Density (long TR &
Sequence TR (5)

Calibration Gain

Calibration mode Voxelwise

o

Reference tissue
Type

Reference T1 (s)
Sequence TE (ms)
Reference T2 (ms)

Blood T2 (ms)

Previous

Output directory not specified

Distortion Correction

Analysis

Browse

4800
100/

Data preview - perfusion weighted image

Use scroll wheel to change slice, double click to change view|  Update

Data order preview

I Pos

Next

[ Repeats

Label

Control





nav.xhtml

    
      Table of Contents


      
        		
          OXASL - ASL-MRI analysis pipeline
        


        		
          Bayesian Inference for Arterial Spin Labelling MRI
        


        		
          Getting the OXASL software
          
            		
              I have FSL 6.0 or later
            


            		
              I have an older version of FSL
            


          


        


        		
          OXASL walk through tutorial - command line
          
            		
              The data
            


            		
              Basic run without calibration or structural data
              
                		
                  The log output
                


                		
                  Output images
                


                		
                  Summary report
                


              


            


            		
              Adding structural information
              
                		
                  Log output
                


                		
                  Output images
                


                		
                  Summary report
                


              


            


            		
              Adding calibration
              
                		
                  Log output
                


                		
                  Output images
                


                		
                  Summary report
                


              


            


            		
              Distortion correction
              
                		
                  Log output
                


                		
                  Output images
                


                		
                  Summary report
                


              


            


            		
              Partial volume correction
              
                		
                  Log output
                


                		
                  Output images
                


                		
                  Summary report
                


              


            


          


        


        		
          OXASL walk through tutorial - GUI
          
            		
              Perfusion quantification using Single PLD pcASL
              
                		
                  The data
                


                		
                  (Simple) Perfusion Quantification
                


              


            


            		
              Improving the Perfusion Images from single PLD pcASL
              
                		
                  Motion and Distortion correction
                


                		
                  Making use of Structural Images
                


                		
                  Different model and calibration choices
                


                		
                  Partial Volume Correction
                


              


            


            		
              Perfusion Quantification (and more) using Multi-PLD pcASL
              
                		
                  The data
                


                		
                  Perfusion Quantification
                


                		
                  Arterial/Macrovascular Signal Correction
                


              


            


            		
              Partial Volume Correction
            


          


        


        		
          Example using vessel encoded pCASL data
          
            		
              Obtaining and installing VEASL
            


            		
              Running OXASL on VE data
              
                		
                  Pairwise subtracted VE data
                


              


            


            		
              Additional common VE options
              
                		
                  –nfpc=<Number of flows per class>
                


                		
                  –infer-loc=none|xy|rigid
                


                		
                  –init-loc
                


              


            


            		
              The log output
            


            		
              Output images
              
                		
                  How all-vessel output images are combined
                


              


            


            		
              Summary report
            


          


        


        		
          Example using multiphase ASL data
          
            		
              Running OXASL on multiphase ASL data
            


            		
              Additional options for multiphase data
              
                		
                  –mp-spatial
                


                		
                  –mp-spatial-phase
                


              


            


            		
              –mp-biascorr
            


            		
              –mp-biascorr-sv
            


            		
              –mp-biascorr-comp
            


            		
              –mp-biascorr-sigma
            


            		
              –mp-options=<options file>
            


            		
              The log output
            


            		
              Output images
            


            		
              Summary report
            


          


        


        		
          OXASL command reference
          
            		
              Full option list
            


          


        


        		
          OXASL API
          
            		
              Workspace module
            


            		
              AslImage module
            


            		
              Registration module
            


            		
              Structural module
            


            		
              Corrections module
            


            		
              OXASL - Python package for ASL-MRI analysis
              
                		
                  Design
                


              


            


            		
              Indices and tables
            


          


        


      


    
  

_images/Dist.jpeg
Input Data

Distortion Correction
/| Apply distortion correction

Calibration Image Mode

Phase-encode-reversed calibration image

Fieldmap Mode

Fieldmap image (in rad/s)

Fieldmap magnitude image

Brain-extracted magnitude image

General
Effective EPI echo spacing

Phase encoding direction

Previous

Ready to Go

Calibration image

aslcalib_PA.nii.gz

Distortion Correction

o

o

Browse

0.06/<:

Next

Data preview - perfusion weighted image

Use scroll wheel to change slice, double click to change view|  Update

Data order preview

I Pos

[ Repeats

Label

Control

Run





_images/Input2.jpeg
InputData  Structure Calibration _Distortion Correction _ Analysis Data preview - perfusion weighted image

Data contents

Input Image asltc.nii.gz Browse
Number of PLDs 60

Number of repeats 8

Data order

Grouping order Label/Control pairs S| | Repeats ¢
! Label/Control pairs Label then control S

Acquisition parameters

Labelling CASL/pcASL <
Bolus duration (s) Constant < 1.80°]
Bolus durations (s)
PLDs (s) 0.25 0.50 0.75 10 1.25 1.50
Readout 2D multi-slice (eg EPI) < Time per slice (ms) 45.20°
Multi-band
Use scroll wheel to change slice, double click to change view  Update
Data order preview
[ ros [ Repeats
Next

Output directory not specified





_images/Calib2.jpeg
InputData  Structure  Calibration  Distortion Correction _ Analysis Data preview - perfusion weighted image

| Enable Calibration

Calibration Image aslcalib.nii.gz Browse
MO Type Proton Density (long TR &

Sequence TR (5) 4802
Calibration Gain 1002
Calibration mode Reference Region B

Reference tissue

Type CsF <
Mask
Reference T1 (s) 4302
Sequence TE (ms) 000/ %
Reference T2 (ms) 750.00 |
Blood T2 (ms) g 150.00
Use scroll wheel to change slice, double click to change view _ Update
Coll Sensitivity Image
Data order preview
[ Pos I Repeats Label Control
Previous Next

Ready to Go Run





_images/Calib3.jpeg
InputData _ Structure Calibration Distortion Correction _ Analysis Data preview - perfusion weighted image

| Enable Calibration

Calibration Image SinglePLDpcASL/aslcalib.nii.gz Browse
MO Type Proton Density (long TR

Sequence TR (s) 4800
Calibration Gain 100/ <
Calibration mode Reference Region <

Reference tissue

Type CSF <
7 Mask csfmask.ni.gz Browse
Reference T1(s) 4.30/C)
Sequence TE (ms) 0.00/
Reference T2 (ms) 750.00 | °'
Blood T2 (ms) 150.00) &

Use scroll wheel to change slice, double click to change view  Update

Coil Sensitivity Image
Data order preview
M eios [ Repeats [] Lebel Contral

Previous Next

Output directory not specified





_images/basic_acbv.png





_images/basic_arrival.png





_images/PWI.jpeg
Input Data _ Structure

Data contents
Input Image
Number of PLDs
Number of repeats
Data order
Grouping order

| Label/Control pairs

Acquisition parameters
Labelling

Bolus duration (s)

Bolus durations (s)

PLDs (s)

Readout

Output directory not specified

asltc.nii.gz

30

Label/Control pairs

Label then control

CASL/pcASL

Constant

18
3D (eg GRASE)

Calibration

o

o

o

o

o

Distortion Correction  Analysis

Browse

1802

Next

Data preview - perfusion weighted image

Use scroll wheel to change slice, double click to change view|  Update

Data order preview

I Pos

[ Repeats

Label

Control





_images/Struct.jpeg
Input Data

Structure
Structural data from

Existing FSL_ANAT directory

Structural Image

Registration

Transform to standard space

Previous

Ready to Go

Structure _ Calibration

Existing FSL_ANAT output

T1.anat

Distortion Correction

Analysis Data preview - perfusion weighted image

o

Browse

Use scroll wheel to change slice, double click to change view|  Update

Data order preview

[ Pwos [ Repeats [ Label Contral

[

Run

Next





_images/basic_perfusion.png





_images/basic_report.png
OXASL pre X

c @ @ file:///home/ibmeuser/data/asl/fs|_cou Lo » =

oxasl documentation » next | index

OXASL processing report

Start time: 2019-01-16 14:24:34 ASLinput data

End time: 2019-01-16 14:28:18

Contents:
Go

« ASLinput data

« Mask generation

» Output image: arrival

» Output image: perfusion
* Output image: aCBV

oxasl documentation » next | index

Copyright 2018, oxasl. Created using Sphinx 1.





_images/basic_report_mask.png
Mask generation — oxas| documentation - Mozilla Firefox

Output imag

<« c @ D file:///home/ibmeuser/data/asl/fslcours

Mask generation

Masked ASL brain image

Mask was generated from brain extracted registration ASLimage

PW ASL image masked by ASL-space mask Outputimage: arrival

Go






_images/calib_report_perfusion.png
X

<« c @ @ file:///home/ibmeuser/data/asl/fs|_cou R Search ¥ » =

oxasl documentation » previous | next | index

Output image: perfusion_calib

. N outputimage: arrival
Calibration

Image was calibrated using supplied MO image

Inversion efficiency: 0.850000 Output image: aCBV_calib

Multiplier for physical units: 6000.000000

Metrice o

Metric Value Typical
Mean within mask  27.81 ml/100g/min
‘GM mean 38.25 ml/100g/min  30-50
Pure GM mean 38.91 ml/100g/min  30-50
‘WM mean 16.98 ml/100g/min  10-20
Pure WM mean 10.66 ml/100g/min  10-20
Image
Y 60

®

50

40






_images/calib_report_refregion.png
Calibration reference regior

I«

»





_images/basil_perfusion.jpg





_images/calib_perfusion.png
60

40

20






_images/pvc_perfusion_gm.png
-100






_images/pvc_perfusion_wm.png





_images/distcorr_perfusion_compare.png





_images/oxasl.png





_images/report_ve.png
Output image: perfusion — oxasl documentation - Mozilla Firefox

Output image: perfusion— X

<« c @ ) file:///home/ibmeuser/ibmecode/build_scripts/ w n @& =
oxasl documentation » Outputfor vessel 1 » previous | next | index

Output image: perfusion

. Output image: arrival
Metrics

Metric Value Typical
Mean withinmask  0.3756 mi/100g/min

Output image: modeffit

__ l4
3

oxasl documentation » Outputfor vessel 1 » previous | next | index






_images/struc_perfusion.png





_images/pvc_report_perfusion.png
Output image: perfusion.

Search ¥ » =

<« c @

oxasl documentation » previous | next | index

Output image: perfusion_calib

. N outputimage: arrival
Calibration

Image was calibrated using supplied MO image

Inversion efficiency: 0.850000 Output image: aCBV_calib

Multiplier for physical units: 6000.000000

Metrics Go

Metric Value Typical

Mean within mask  67.36 ml/100g/min

‘GM mean 58.82 ml/100g/min  30-50

Pure GM mean 46.46 m1/100g/min  30-50

‘WM mean 59.13 ml/100g/min  10-20

Pure WM mean 60.29 ml/100g/min  10-20

Image

. 140

120
100
80






_static/comment-bright.png





_images/struc_report.png
<« c @ D file:///home/ibmeuser/data/asl/fslcou

¥ » =

oxasl documentation » previous | next | index

Initial ASL -> Structural registration

. Segmentation of structural
Transformation parameters image

Translation magnitude 39.8 mm
Rotation magnitude  0.618°

TOPUP distortion correction
ASL->Structural transformation matrix

1 —-0.00307 -0.00191 -17.1
0.00305 1 -0.0102  -6.21 Go
0.00194  0.0102 1 354

0 0 0 1

Structural->ASL transformation matrix

1 0.00305 0.00194 17.1
—0.00307 1 0.0102 579
—0.00191  -0.0102 1 =355

0 0 0 1

GM mask aligned with ASL data






_static/ajax-loader.gif





_static/down-pressed.png





_static/comment-close.png





_static/comment.png





